Menu Close

1-prove-that-0-e-t-ln-t-1-e-t-2-dt-1-2-ln-pi-2-




Question Number 151819 by mnjuly1970 last updated on 23/Aug/21
       1. prove that :  ∫_0 ^( ∞) (( e^( t) .ln(t ))/((1 + e^( t) )^( 2) )) dt=(1/2)(ln((π/2) )− γ )
1.provethat:0et.ln(t)(1+et)2dt=12(ln(π2)γ)
Answered by Lordose last updated on 23/Aug/21
  Ω = ∫_0 ^( ∞) ((e^t log(t))/((1+e^t )^2 ))dt = ∫_0 ^( ∞) ((e^(−t) log(t))/((1+e^(−t) )^2 ))dt  Ω(a) = ∫_0 ^( ∞) ((t^a e^(−t) )/((1+e^(−t) )^2 ))dt = Σ_(n=1) ^∞ (−1)^(n+1) n∫_0 ^( ∞) t^a e^(−nt) dt  Ω(a) =^(t=(x/n)) Σ_(n=1) ^∞ (((−1)^(n+1) )/n^a )∫_0 ^( ∞) x^(a+1−1) e^(−x) dx = 𝚪(a+1)𝛈(a)  Ω′(a) = 𝚪(a+1)(𝛈′(a) + 𝛈(a)𝛙^((0)) (a+1))  Ω = Ω′(0)  𝛙^((0)) (1) = −𝛄, 𝛈(0) = (1/2), 𝛈′(0) = (1/2)log((𝛑/2))  𝛀 = (1/2)(log((𝛑/2)) − 𝛄)
Ω=0etlog(t)(1+et)2dt=0etlog(t)(1+et)2dtΩ(a)=0taet(1+et)2dt=n=1(1)n+1n0taentdtΩ(a)=t=xnn=1(1)n+1na0xa+11exdx=Γ(a+1)η(a)Ω(a)=Γ(a+1)(η(a)+η(a)ψ(0)(a+1))Ω=Ω(0)ψ(0)(1)=γ,η(0)=12,η(0)=12log(π2)Ω=12(log(π2)γ)
Commented by mnjuly1970 last updated on 23/Aug/21
bravo mr lordose excellent...  grateful..
bravomrlordoseexcellentgrateful..
Commented by Tawa11 last updated on 23/Aug/21
Weldone sir
Weldonesir
Commented by Tawa11 last updated on 23/Aug/21
Sir, please prescribe a book I can learn some stuffs like this.  Thanks sir. I just want to be learning this sir.
Sir,pleaseprescribeabookIcanlearnsomestuffslikethis.Thankssir.Ijustwanttobelearningthissir.
Commented by Lordose last updated on 23/Aug/21
Advanced calculus explored  Advanced Engineering Mathematics
AdvancedcalculusexploredAdvancedEngineeringMathematics

Leave a Reply

Your email address will not be published. Required fields are marked *