Menu Close

1-prove-that-a-b-R-2-sinb-sina-b-a-2-let-give-the-sequence-x-0-0-and-x-n-1-a-1-2-sin-x-n-prove-that-for-m-n-x-m-x-n-a-2-n-1-3-prove-that-x-n-is-convergent-an




Question Number 33596 by abdo imad last updated on 19/Apr/18
1) prove that ∀(a,b)∈R^2     ∣sinb −sina∣≤∣b−a∣  2)let give the sequence  x_0 =0 and  x_(n+1) =a +(1/2)sin(x_n ) prove that for m≥n  ∣x_m  −x_n ∣ ≤  ((∣a∣)/2^(n−1) )  3) prove that (x_n ) is convergent and its limit is solution  of the equation  x = a +(1/2) sinx .
$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\left({a},{b}\right)\in{R}^{\mathrm{2}} \:\:\:\:\mid{sinb}\:−{sina}\mid\leqslant\mid{b}−{a}\mid \\ $$$$\left.\mathrm{2}\right){let}\:{give}\:{the}\:{sequence}\:\:{x}_{\mathrm{0}} =\mathrm{0}\:{and} \\ $$$${x}_{{n}+\mathrm{1}} ={a}\:+\frac{\mathrm{1}}{\mathrm{2}}{sin}\left({x}_{{n}} \right)\:{prove}\:{that}\:{for}\:{m}\geqslant{n} \\ $$$$\mid{x}_{{m}} \:−{x}_{{n}} \mid\:\leqslant\:\:\frac{\mid{a}\mid}{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\left({x}_{{n}} \right)\:{is}\:{convergent}\:{and}\:{its}\:{limit}\:{is}\:{solution} \\ $$$${of}\:{the}\:{equation}\:\:{x}\:=\:{a}\:+\frac{\mathrm{1}}{\mathrm{2}}\:{sinx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *