1-prove-that-arctan-a-arctanb-arctan-a-b-1-ab-with-ab-1-2-find-the-value-of-S-N-n-1-N-1-n-arctan-2n-1-n-2-n-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 57848 by Abdo msup. last updated on 13/Apr/19 1)provethatarctan(a)+arctanb=arctan(a+b1−ab)withab≠12)findthevalueofSN=∑n=1N(−1)narctan(2n+1n2+n−1) Commented by maxmathsup by imad last updated on 13/Apr/19 1)letputα=arctan(a)andβ=arctan(b)⇒tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)=a+b1−ab(wesupposeab≠1)⇒α+β=arctan(a+b1−ab)2)wehaveSn=−∑n=1N(−1)narctan(2n+11−n(n+1))=−∑n=1N(−1)narctan(n+n+11−n(n+1))=−∑n=1N(−1)n{arctan(n)+arctan(n+1)}⇒−Sn=−arctan(1)−arctan(2)+arctan(2)+arctan(3)−…+(−1)narctan(n)+(−1)narctan(n+1)=(−1)narctan(n+1)−π4⇒SN=π4−(−1)narctan(n+1). Commented by maxmathsup by imad last updated on 13/Apr/19 SN=π4−(−1)Narctan(N+1). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-188912Next Next post: Question-123385 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.