Menu Close

1-prove-that-arctan-a-arctanb-arctan-a-b-1-ab-with-ab-1-2-find-the-value-of-S-N-n-1-N-1-n-arctan-2n-1-n-2-n-1-




Question Number 57848 by Abdo msup. last updated on 13/Apr/19
1)prove that arctan(a) +arctanb =arctan(((a+b)/(1−ab)))   with ab≠1  2)find the value of S_N = Σ_(n=1) ^N (−1)^n  arctan(((2n+1)/(n^2  +n−1)))
1)provethatarctan(a)+arctanb=arctan(a+b1ab)withab12)findthevalueofSN=n=1N(1)narctan(2n+1n2+n1)
Commented by maxmathsup by imad last updated on 13/Apr/19
1) let put α =arctan(a) and β =arctan(b)  ⇒  tan(α+β) =((tan(α)+tan(β))/(1−tan(α)tan(β))) =((a+b)/(1−ab))   (we suppose ab ≠1) ⇒  α+β =arctan(((a+b)/(1−ab)))  2) we have S_n =−Σ_(n=1) ^N  (−1)^n  arctan(((2n+1)/(1−n(n+1))))  =−Σ_(n=1) ^N   (−1)^n  arctan(((n +n+1)/(1−n(n+1)))) =−Σ_(n=1) ^N  (−1)^n {arctan(n) +arctan(n+1)}  ⇒−S_n =−arctan(1) −arctan(2) +arctan(2) +arctan(3)−...  +(−1)^n  arctan(n) +(−1)^n  arctan(n+1)  =(−1)^n  arctan(n+1) −(π/4) ⇒ S_N =(π/4) −(−1)^n  arctan(n+1) .
1)letputα=arctan(a)andβ=arctan(b)tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)=a+b1ab(wesupposeab1)α+β=arctan(a+b1ab)2)wehaveSn=n=1N(1)narctan(2n+11n(n+1))=n=1N(1)narctan(n+n+11n(n+1))=n=1N(1)n{arctan(n)+arctan(n+1)}Sn=arctan(1)arctan(2)+arctan(2)+arctan(3)+(1)narctan(n)+(1)narctan(n+1)=(1)narctan(n+1)π4SN=π4(1)narctan(n+1).
Commented by maxmathsup by imad last updated on 13/Apr/19
S_N =(π/4)−(−1)^N  arctan(N+1) .
SN=π4(1)Narctan(N+1).

Leave a Reply

Your email address will not be published. Required fields are marked *