Menu Close

1-prove-that-if-f-is-decreasing-function-we-have-n-n-1-f-t-dt-lt-f-n-lt-n-1-n-f-t-dt-2-let-put-S-n-k-1-n-2-1-2-k-calculate-S-n-




Question Number 30484 by abdo imad last updated on 22/Feb/18
1) prove that if f is decreasing function we have   ∫_n ^(n+1) f(t)dt <f(n)< ∫_(n−1) ^n  f(t) dt  .  2) let put  S_n = Σ_(k=1) ^n^2     (1/(2(√k))) .calculate [S_n ].
$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{if}\:{f}\:{is}\:{decreasing}\:{function}\:{we}\:{have} \\ $$$$\:\int_{{n}} ^{{n}+\mathrm{1}} {f}\left({t}\right){dt}\:<{f}\left({n}\right)<\:\int_{{n}−\mathrm{1}} ^{{n}} \:{f}\left({t}\right)\:{dt}\:\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{put}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}^{\mathrm{2}} } \:\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{k}}}\:.{calculate}\:\left[{S}_{{n}} \right]. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *