Menu Close

1-prove-that-if-f-is-decreasing-function-we-have-n-n-1-f-t-dt-lt-f-n-lt-n-1-n-f-t-dt-2-let-put-S-n-k-1-n-2-1-2-k-calculate-S-n-




Question Number 30484 by abdo imad last updated on 22/Feb/18
1) prove that if f is decreasing function we have   ∫_n ^(n+1) f(t)dt <f(n)< ∫_(n−1) ^n  f(t) dt  .  2) let put  S_n = Σ_(k=1) ^n^2     (1/(2(√k))) .calculate [S_n ].
1)provethatiffisdecreasingfunctionwehavenn+1f(t)dt<f(n)<n1nf(t)dt.2)letputSn=k=1n212k.calculate[Sn].

Leave a Reply

Your email address will not be published. Required fields are marked *