Menu Close

1-Prove-that-if-gt-0-and-a-x-R-then-a-x-lt-iff-x-lt-a-lt-x-help-




Question Number 193078 by Mastermind last updated on 03/Jun/23
1) Prove that if ε>0 and a,x∈R, then  ∣a−x∣<ε iff x−ε<a<x+ε    help
$$\left.\mathrm{1}\right)\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\varepsilon>\mathrm{0}\:\mathrm{and}\:\mathrm{a},\mathrm{x}\in\mathbb{R},\:\mathrm{then} \\ $$$$\mid\mathrm{a}−\mathrm{x}\mid<\varepsilon\:\mathrm{iff}\:\mathrm{x}−\varepsilon<\mathrm{a}<\mathrm{x}+\varepsilon \\ $$$$ \\ $$$$\mathrm{help} \\ $$
Answered by Subhi last updated on 03/Jun/23
−ε<a−x<ε  x−ε<a<x+ε
$$−\epsilon<{a}−{x}<\epsilon \\ $$$${x}−\epsilon<{a}<{x}+\epsilon \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *