Menu Close

1-prove-that-k-1-n-H-k-n-1-H-n-n-2-prove-that-k-1-n-H-k-2-n-1-H-n-2-3n-1-H-n-2n-H-n-k-1-n-1-k-




Question Number 34596 by abdo mathsup 649 cc last updated on 08/May/18
1) prove that  Σ_(k=1) ^n  H_k =(n+1)H_n  −n  2) prove that  Σ_(k=1) ^n  H_k ^2   =(n+1)H_n ^2   −(3n+1)H_n  +2n  H_n =Σ_(k=1) ^n   (1/k) .
$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} =\left({n}+\mathrm{1}\right){H}_{{n}} \:−{n} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} ^{\mathrm{2}} \:\:=\left({n}+\mathrm{1}\right){H}_{{n}} ^{\mathrm{2}} \:\:−\left(\mathrm{3}{n}+\mathrm{1}\right){H}_{{n}} \:+\mathrm{2}{n} \\ $$$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *