Menu Close

1-prove-that-n-2-n-inyegr-x-2n-1-x-1-x-1-k-1-n-1-x-2-2cos-kpi-n-x-1-2-find-the-value-of-0-pi-ln-x-2-2xcost-1-dt-




Question Number 40882 by prof Abdo imad last updated on 28/Jul/18
1)prove that ∀n≥2(n inyegr)  x^(2n) −1=(x−1)(x+1)Π_(k=1) ^(n−1) (x^2  −2cos(((kπ)/n))x+1)  2)find the value of  ∫_0 ^π ln(x^2 −2xcost +1)dt
$$\left.\mathrm{1}\right){prove}\:{that}\:\forall{n}\geqslant\mathrm{2}\left({n}\:{inyegr}\right) \\ $$$${x}^{\mathrm{2}{n}} −\mathrm{1}=\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} {ln}\left({x}^{\mathrm{2}} −\mathrm{2}{xcost}\:+\mathrm{1}\right){dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *