Menu Close

1-prove-that-x-0-1-1-1-x-lnx-x-1-2-find-2-sequences-u-n-and-v-n-u-n-k-1-n-1-ln-k-n-v-n-n-2-




Question Number 34258 by math khazana by abdo last updated on 03/May/18
1) prove that ∀ x∈]0,1[  1−(1/x)≤lnx≤ x−1  2) find 2 sequences u_n  and v_n    /  u_n ≤Π_(k=1) ^(n−1)  ln((k/n))≤v_n     ∀n≥2
$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:\forall\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\:\mathrm{1}−\frac{\mathrm{1}}{{x}}\leqslant{lnx}\leqslant\:{x}−\mathrm{1}\right. \\ $$$$\left.\mathrm{2}\right)\:{find}\:\mathrm{2}\:{sequences}\:{u}_{{n}} \:{and}\:{v}_{{n}} \:\:\:/ \\ $$$${u}_{{n}} \leqslant\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{ln}\left(\frac{{k}}{{n}}\right)\leqslant{v}_{{n}} \:\:\:\:\forall{n}\geqslant\mathrm{2} \\ $$
Commented by math khazana by abdo last updated on 03/May/18
2)the Q is  e^u_n    ≤  Π_(k=1) ^n (k/n) ≤ e^v_n      ∀n≥2
$$\left.\mathrm{2}\right){the}\:{Q}\:{is}\:\:{e}^{{u}_{{n}} } \:\:\leqslant\:\:\prod_{{k}=\mathrm{1}} ^{{n}} \frac{{k}}{{n}}\:\leqslant\:{e}^{{v}_{{n}} } \:\:\:\:\forall{n}\geqslant\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *