Menu Close

1-prove-that-x-gt-0-x-x-1-ln-1-x-x-2-let-put-S-n-k-1-n-1-k-n-find-lim-n-S-n-




Question Number 30485 by abdo imad last updated on 22/Feb/18
1) prove that ∀ x>0   (x/(x+1)) ≤ ln(1+x)≤x  2) let put  S_n = Π_(k=1) ^n (1 + (k/n)) find lim_(n→∞)  S_n   .
$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\:{x}>\mathrm{0}\:\:\:\frac{{x}}{{x}+\mathrm{1}}\:\leqslant\:{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{put}\:\:{S}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\:+\:\frac{{k}}{{n}}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} \:\:. \\ $$
Commented by chantriachheang last updated on 23/Feb/18
well, it is a famous problem ^� ∧∧
$$\boldsymbol{{well}},\:\boldsymbol{{it}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{famous}}\:\boldsymbol{{problem}}\hat {\:}\wedge\wedge \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *