Menu Close

1-prove-the-convexity-of-f-x-ln-1-e-x-2-prove-that-x-1-x-2-x-n-R-n-1-k-1-n-x-k-1-n-k-1-n-x-k-1-1-n-3-prove-that-1-n-1-n-n-1-1-n-




Question Number 51984 by maxmathsup by imad last updated on 01/Jan/19
1) prove the convexity of f(x)=ln(1+e^x )  2) prove that ∀(x_1 ,x_2 ,...,x_n )∈R^n   1+Π_(k=1) ^n (x_k )^(1/n)  ≤ Π_(k=1) ^n (x_k +1)^(1/n)   3) prove that  1+(n!)^(1/n) ≤((n+1)!)^(1/n)
$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{convexity}\:{of}\:{f}\left({x}\right)={ln}\left(\mathrm{1}+{e}^{{x}} \right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…,{x}_{{n}} \right)\in{R}^{{n}} \\ $$$$\mathrm{1}+\prod_{{k}=\mathrm{1}} ^{{n}} \left({x}_{{k}} \right)^{\frac{\mathrm{1}}{{n}}} \:\leqslant\:\prod_{{k}=\mathrm{1}} ^{{n}} \left({x}_{{k}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:\mathrm{1}+\left({n}!\right)^{\frac{\mathrm{1}}{{n}}} \leqslant\left(\left({n}+\mathrm{1}\right)!\right)^{\frac{\mathrm{1}}{{n}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *