Menu Close

1-prove-the-existence-of-the-integral-I-0-pi-2-ln-1-cosx-cosx-dx-2-prove-that-I-D-siny-1-cosx-cosy-dxdy-with-D-0-pi-2-2-3-find-the-value-of-I-




Question Number 27684 by abdo imad last updated on 12/Jan/18
1) prove the existence of the integral  I=∫_0 ^(π/2)   ((ln(1+cosx))/(cosx))dx  2)prove that I= ∫∫_D   ((siny)/(1+cosx cosy))dxdy with   D=[0,(π/2)]^2   3)find the value of I.
$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{the}\:{integral} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}{dx} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{I}=\:\int\int_{{D}} \:\:\frac{{siny}}{\mathrm{1}+{cosx}\:{cosy}}{dxdy}\:{with}\: \\ $$$${D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{I}. \\ $$
Commented by abdo imad last updated on 16/Jan/18
1) the convergence of I is easy lim_(x→(π/2))  ((ln(1+cosx))/(cosx))  = lim_(x→(π/2))    ((−sinx)/(−sinx(1+cosx)))= 1  (by hospital theorem  )  so the function is local integrable in [0,(π/2)[  2) I= ∫∫_(0≤x≤ (π/2) and 0≤y≤ (π/2))   ((siny)/(1+cosx cosy)) dx dy  I= ∫_0 ^(π/2) (  ∫_0 ^(π/2)     (1/(cosx))(  −( ((1+cosx cosy)^, )/(1+cosx cosy)))dy)dx  I= ∫_0 ^(π/2)    (1/(cosx)) [−ln/1+cosx cosy/]_(y=0) ^(y=(π/2)) ]dx  I=∫_0 ^(π/(2 ))     ((ln(1+cosx))/(cosx))dx  3) I=∫_0 ^(π/2)  (∫_0 ^(π/2)      (dx/(1+cosy cosx)))siny dy  but   J= ∫_0 ^(π/2)      (dx/(1+cosy cosx))= ∫_0 ^(π/2)    (dx/(1+λ cosx)) (λ=cosy)and the ch.  tan((x/2))=t  give  J= ∫_0^  ^1      (((2dt)/(1+t^2 ))/(1+λ((1−t^2 )/(1+t^2 ))))= ∫_0 ^1    ((2dt)/(1+t^2  +λ−λt^2 ))  = ∫_0 ^1     ((2dt)/((1−λ)t^2  +1+λ))= (2/(1−λ)) ∫_0 ^1      (dt/(t^2 +((√(((1+λ)/(1−λ)))))))2  = (2/( (√(1−λ^2 )))) ∫_0 ^(√((1−λ)/(1+λ)))        (du/(1+u^2 ))      (ch.t=(√((1+λ)/(1−λ)))  u)  =(2/( (√(1−λ^2 )))) artan( (√((1−λ)/(1+λ)))))= (2/(siny)) artan(tan((y/(2)))))= (y/(siny))  I= ∫_0 ^(π/2) (y/(siny)) sinydy= [(1/2) y^2 ]_0 ^(π/2) = (1/2) (π^2 /4)= (π^2 /8) .
$$\left.\mathrm{1}\right)\:{the}\:{convergence}\:{of}\:{I}\:{is}\:{easy}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}} \\ $$$$=\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\frac{−{sinx}}{−{sinx}\left(\mathrm{1}+{cosx}\right)}=\:\mathrm{1}\:\:\left({by}\:{hospital}\:{theorem}\:\:\right) \\ $$$${so}\:{the}\:{function}\:{is}\:{local}\:{integrable}\:{in}\:\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{I}=\:\int\int_{\mathrm{0}\leqslant{x}\leqslant\:\frac{\pi}{\mathrm{2}}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\:\frac{\pi}{\mathrm{2}}} \:\:\frac{{siny}}{\mathrm{1}+{cosx}\:{cosy}}\:{dx}\:{dy} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\mathrm{1}}{{cosx}}\left(\:\:−\left(\:\frac{\left.\mathrm{1}+{cosx}\:{cosy}\right)^{,} }{\mathrm{1}+{cosx}\:{cosy}}\right){dy}\right){dx}\right. \\ $$$$\left.{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\mathrm{1}}{{cosx}}\:\left[−{ln}/\mathrm{1}+{cosx}\:{cosy}/\right]_{{y}=\mathrm{0}} ^{{y}=\frac{\pi}{\mathrm{2}}} \right]{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}{dx} \\ $$$$\left.\mathrm{3}\right)\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cosy}\:{cosx}}\right){siny}\:{dy}\:\:{but} \\ $$$$\:{J}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cosy}\:{cosx}}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}+\lambda\:{cosx}}\:\left(\lambda={cosy}\right){and}\:{the}\:{ch}. \\ $$$${tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:\:{give}\:\:{J}=\:\int_{\mathrm{0}^{} } ^{\mathrm{1}} \:\:\:\:\:\frac{\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{1}+\lambda\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+\lambda−\lambda{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}−\lambda\right){t}^{\mathrm{2}} \:+\mathrm{1}+\lambda}=\:\frac{\mathrm{2}}{\mathrm{1}−\lambda}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} +\left(\sqrt{\left.\frac{\mathrm{1}+\lambda}{\mathrm{1}−\lambda}\right)}\right.}\mathrm{2} \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:\int_{\mathrm{0}} ^{\sqrt{\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda}}} \:\:\:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\:\:\:\:\:\left({ch}.{t}=\sqrt{\frac{\mathrm{1}+\lambda}{\mathrm{1}−\lambda}}\:\:{u}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:{artan}\left(\:\sqrt{\frac{\mathrm{1}−\lambda}{\left.\mathrm{1}+\lambda\right)}}\right)=\:\frac{\mathrm{2}}{{siny}}\:{artan}\left({tan}\left(\frac{{y}}{\left.\mathrm{2}\right)}\right)\right)=\:\frac{{y}}{{siny}} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{y}}{{siny}}\:{sinydy}=\:\left[\frac{\mathrm{1}}{\mathrm{2}}\:{y}^{\mathrm{2}} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *