1-prove-the-existence-of-the-integral-I-0-pi-2-ln-1-cosx-cosx-dx-2-prove-that-I-D-siny-1-cosx-cosy-dxdy-with-D-0-pi-2-2-3-find-the-value-of-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27684 by abdo imad last updated on 12/Jan/18 1)provetheexistenceoftheintegralI=∫0π2ln(1+cosx)cosxdx2)provethatI=∫∫Dsiny1+cosxcosydxdywithD=[0,π2]23)findthevalueofI. Commented by abdo imad last updated on 16/Jan/18 1)theconvergenceofIiseasylimx→π2ln(1+cosx)cosx=limx→π2−sinx−sinx(1+cosx)=1(byhospitaltheorem)sothefunctionislocalintegrablein[0,π2[2)I=∫∫0⩽x⩽π2and0⩽y⩽π2siny1+cosxcosydxdyI=∫0π2(∫0π21cosx(−(1+cosxcosy),1+cosxcosy)dy)dxI=∫0π21cosx[−ln/1+cosxcosy/]y=0y=π2]dxI=∫0π2ln(1+cosx)cosxdx3)I=∫0π2(∫0π2dx1+cosycosx)sinydybutJ=∫0π2dx1+cosycosx=∫0π2dx1+λcosx(λ=cosy)andthech.tan(x2)=tgiveJ=∫012dt1+t21+λ1−t21+t2=∫012dt1+t2+λ−λt2=∫012dt(1−λ)t2+1+λ=21−λ∫01dtt2+(1+λ1−λ)2=21−λ2∫01−λ1+λdu1+u2(ch.t=1+λ1−λu)=21−λ2artan(1−λ1+λ))=2sinyartan(tan(y2)))=ysinyI=∫0π2ysinysinydy=[12y2]0π2=12π24=π28. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158749Next Next post: Write-the-first-five-series-indicating-the-5th-term-5th-partial-sum-n-1-t-n-where-t-n-1-for-n-1-1-2-for-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.