Menu Close

1-prove-the-existence-of-the-integral-I-0-pi-2-ln-1-cosx-cosx-dx-2-prove-that-I-D-siny-1-cosx-cosy-dxdy-with-D-0-pi-2-2-3-find-the-value-of-I-




Question Number 27684 by abdo imad last updated on 12/Jan/18
1) prove the existence of the integral  I=∫_0 ^(π/2)   ((ln(1+cosx))/(cosx))dx  2)prove that I= ∫∫_D   ((siny)/(1+cosx cosy))dxdy with   D=[0,(π/2)]^2   3)find the value of I.
1)provetheexistenceoftheintegralI=0π2ln(1+cosx)cosxdx2)provethatI=Dsiny1+cosxcosydxdywithD=[0,π2]23)findthevalueofI.
Commented by abdo imad last updated on 16/Jan/18
1) the convergence of I is easy lim_(x→(π/2))  ((ln(1+cosx))/(cosx))  = lim_(x→(π/2))    ((−sinx)/(−sinx(1+cosx)))= 1  (by hospital theorem  )  so the function is local integrable in [0,(π/2)[  2) I= ∫∫_(0≤x≤ (π/2) and 0≤y≤ (π/2))   ((siny)/(1+cosx cosy)) dx dy  I= ∫_0 ^(π/2) (  ∫_0 ^(π/2)     (1/(cosx))(  −( ((1+cosx cosy)^, )/(1+cosx cosy)))dy)dx  I= ∫_0 ^(π/2)    (1/(cosx)) [−ln/1+cosx cosy/]_(y=0) ^(y=(π/2)) ]dx  I=∫_0 ^(π/(2 ))     ((ln(1+cosx))/(cosx))dx  3) I=∫_0 ^(π/2)  (∫_0 ^(π/2)      (dx/(1+cosy cosx)))siny dy  but   J= ∫_0 ^(π/2)      (dx/(1+cosy cosx))= ∫_0 ^(π/2)    (dx/(1+λ cosx)) (λ=cosy)and the ch.  tan((x/2))=t  give  J= ∫_0^  ^1      (((2dt)/(1+t^2 ))/(1+λ((1−t^2 )/(1+t^2 ))))= ∫_0 ^1    ((2dt)/(1+t^2  +λ−λt^2 ))  = ∫_0 ^1     ((2dt)/((1−λ)t^2  +1+λ))= (2/(1−λ)) ∫_0 ^1      (dt/(t^2 +((√(((1+λ)/(1−λ)))))))2  = (2/( (√(1−λ^2 )))) ∫_0 ^(√((1−λ)/(1+λ)))        (du/(1+u^2 ))      (ch.t=(√((1+λ)/(1−λ)))  u)  =(2/( (√(1−λ^2 )))) artan( (√((1−λ)/(1+λ)))))= (2/(siny)) artan(tan((y/(2)))))= (y/(siny))  I= ∫_0 ^(π/2) (y/(siny)) sinydy= [(1/2) y^2 ]_0 ^(π/2) = (1/2) (π^2 /4)= (π^2 /8) .
1)theconvergenceofIiseasylimxπ2ln(1+cosx)cosx=limxπ2sinxsinx(1+cosx)=1(byhospitaltheorem)sothefunctionislocalintegrablein[0,π2[2)I=0xπ2and0yπ2siny1+cosxcosydxdyI=0π2(0π21cosx((1+cosxcosy),1+cosxcosy)dy)dxI=0π21cosx[ln/1+cosxcosy/]y=0y=π2]dxI=0π2ln(1+cosx)cosxdx3)I=0π2(0π2dx1+cosycosx)sinydybutJ=0π2dx1+cosycosx=0π2dx1+λcosx(λ=cosy)andthech.tan(x2)=tgiveJ=012dt1+t21+λ1t21+t2=012dt1+t2+λλt2=012dt(1λ)t2+1+λ=21λ01dtt2+(1+λ1λ)2=21λ201λ1+λdu1+u2(ch.t=1+λ1λu)=21λ2artan(1λ1+λ))=2sinyartan(tan(y2)))=ysinyI=0π2ysinysinydy=[12y2]0π2=12π24=π28.

Leave a Reply

Your email address will not be published. Required fields are marked *