Menu Close

1-Proven-that-by-all-n-N-2-4-2n-n-1-n-2-Proven-by-recurring-that-p-1-n-pp-n-1-1-




Question Number 158340 by LEKOUMA last updated on 02/Nov/21
1) Proven that by all n ∈ N^∗    2!4!..(2n)!≥((n+1)!)^n   2) Proven by recurring that   Σ_(p=1) ^n pp!=(n+1)!−1
$$\left.\mathrm{1}\right)\:{Proven}\:{that}\:{by}\:{all}\:{n}\:\in\:{N}^{\ast} \\ $$$$\:\mathrm{2}!\mathrm{4}!..\left(\mathrm{2}{n}\right)!\geqslant\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{Proven}\:{by}\:{recurring}\:{that}\: \\ $$$$\sum_{{p}=\mathrm{1}} ^{{n}} {pp}!=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$
Answered by puissant last updated on 03/Nov/21
2)  Σ_(p=1) ^n pp! = Σ_(p=1) ^n {(p+1)−1}p! = (p+1)!−p!  = 2!−1!+3!−2!+.....+n!−(n−1)!+(n+1)!−n!  = (n+1)!−1..
$$\left.\mathrm{2}\right) \\ $$$$\underset{{p}=\mathrm{1}} {\overset{{n}} {\sum}}{pp}!\:=\:\underset{{p}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\left({p}+\mathrm{1}\right)−\mathrm{1}\right\}{p}!\:=\:\left({p}+\mathrm{1}\right)!−{p}! \\ $$$$=\:\mathrm{2}!−\mathrm{1}!+\mathrm{3}!−\mathrm{2}!+…..+{n}!−\left({n}−\mathrm{1}\right)!+\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$=\:\left({n}+\mathrm{1}\right)!−\mathrm{1}.. \\ $$
Answered by puissant last updated on 03/Nov/21
1)  ★ 2! ≥ ((1+1)!)^1  → 2! ≥ 2! ✓  ★ 2!4! ≥ ((2+1)!)^2  → 48 ≥ 36 ✓    Π_(k=1) ^n (2k)! ≥ ((n+1)!)^n    ⇒ Π_(k=1) ^n (2k)!(2n+2)! ≥ ((n+1)!)^n (2n+2)!  ⇒ Π_(k=1) ^(n+1) (2k)! ≥ ((n+1)!)^(n+1) Π_(k=n) ^(2n) (k+2)≥((n+1)!)^(n+1)   ⇒ Π_(k=1) ^(n+1) (2k)! ≥ ((n+1)!)^(n+1)  ✓                               .........Le puissant............
$$\left.\mathrm{1}\right) \\ $$$$\bigstar\:\mathrm{2}!\:\geqslant\:\left(\left(\mathrm{1}+\mathrm{1}\right)!\right)^{\mathrm{1}} \:\rightarrow\:\mathrm{2}!\:\geqslant\:\mathrm{2}!\:\checkmark \\ $$$$\bigstar\:\mathrm{2}!\mathrm{4}!\:\geqslant\:\left(\left(\mathrm{2}+\mathrm{1}\right)!\right)^{\mathrm{2}} \:\rightarrow\:\mathrm{48}\:\geqslant\:\mathrm{36}\:\checkmark \\ $$$$\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \: \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}\right)!\left(\mathrm{2}{n}+\mathrm{2}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \left(\mathrm{2}{n}+\mathrm{2}\right)! \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\prod}}\left(\mathrm{2}{k}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}+\mathrm{1}} \underset{{k}={n}} {\overset{\mathrm{2}{n}} {\prod}}\left({k}+\mathrm{2}\right)\geqslant\left(\left({n}+\mathrm{1}\right)!\right)^{{n}+\mathrm{1}} \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\prod}}\left(\mathrm{2}{k}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}+\mathrm{1}} \:\checkmark \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………\mathscr{L}{e}\:{puissant}………… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *