Question Number 158340 by LEKOUMA last updated on 02/Nov/21
$$\left.\mathrm{1}\right)\:{Proven}\:{that}\:{by}\:{all}\:{n}\:\in\:{N}^{\ast} \\ $$$$\:\mathrm{2}!\mathrm{4}!..\left(\mathrm{2}{n}\right)!\geqslant\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{Proven}\:{by}\:{recurring}\:{that}\: \\ $$$$\sum_{{p}=\mathrm{1}} ^{{n}} {pp}!=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$
Answered by puissant last updated on 03/Nov/21
$$\left.\mathrm{2}\right) \\ $$$$\underset{{p}=\mathrm{1}} {\overset{{n}} {\sum}}{pp}!\:=\:\underset{{p}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\left({p}+\mathrm{1}\right)−\mathrm{1}\right\}{p}!\:=\:\left({p}+\mathrm{1}\right)!−{p}! \\ $$$$=\:\mathrm{2}!−\mathrm{1}!+\mathrm{3}!−\mathrm{2}!+…..+{n}!−\left({n}−\mathrm{1}\right)!+\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$=\:\left({n}+\mathrm{1}\right)!−\mathrm{1}.. \\ $$
Answered by puissant last updated on 03/Nov/21
$$\left.\mathrm{1}\right) \\ $$$$\bigstar\:\mathrm{2}!\:\geqslant\:\left(\left(\mathrm{1}+\mathrm{1}\right)!\right)^{\mathrm{1}} \:\rightarrow\:\mathrm{2}!\:\geqslant\:\mathrm{2}!\:\checkmark \\ $$$$\bigstar\:\mathrm{2}!\mathrm{4}!\:\geqslant\:\left(\left(\mathrm{2}+\mathrm{1}\right)!\right)^{\mathrm{2}} \:\rightarrow\:\mathrm{48}\:\geqslant\:\mathrm{36}\:\checkmark \\ $$$$\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \: \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}\right)!\left(\mathrm{2}{n}+\mathrm{2}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \left(\mathrm{2}{n}+\mathrm{2}\right)! \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\prod}}\left(\mathrm{2}{k}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}+\mathrm{1}} \underset{{k}={n}} {\overset{\mathrm{2}{n}} {\prod}}\left({k}+\mathrm{2}\right)\geqslant\left(\left({n}+\mathrm{1}\right)!\right)^{{n}+\mathrm{1}} \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\prod}}\left(\mathrm{2}{k}\right)!\:\geqslant\:\left(\left({n}+\mathrm{1}\right)!\right)^{{n}+\mathrm{1}} \:\checkmark \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………\mathscr{L}{e}\:{puissant}………… \\ $$