Menu Close

1-Proven-that-by-all-n-N-2-4-2n-n-1-n-2-Proven-by-recurring-that-p-1-n-pp-n-1-1-




Question Number 158340 by LEKOUMA last updated on 02/Nov/21
1) Proven that by all n ∈ N^∗    2!4!..(2n)!≥((n+1)!)^n   2) Proven by recurring that   Σ_(p=1) ^n pp!=(n+1)!−1
1)ProventhatbyallnN2!4!..(2n)!((n+1)!)n2)Provenbyrecurringthatp=1npp!=(n+1)!1
Answered by puissant last updated on 03/Nov/21
2)  Σ_(p=1) ^n pp! = Σ_(p=1) ^n {(p+1)−1}p! = (p+1)!−p!  = 2!−1!+3!−2!+.....+n!−(n−1)!+(n+1)!−n!  = (n+1)!−1..
2)np=1pp!=np=1{(p+1)1}p!=(p+1)!p!=2!1!+3!2!+..+n!(n1)!+(n+1)!n!=(n+1)!1..
Answered by puissant last updated on 03/Nov/21
1)  ★ 2! ≥ ((1+1)!)^1  → 2! ≥ 2! ✓  ★ 2!4! ≥ ((2+1)!)^2  → 48 ≥ 36 ✓    Π_(k=1) ^n (2k)! ≥ ((n+1)!)^n    ⇒ Π_(k=1) ^n (2k)!(2n+2)! ≥ ((n+1)!)^n (2n+2)!  ⇒ Π_(k=1) ^(n+1) (2k)! ≥ ((n+1)!)^(n+1) Π_(k=n) ^(2n) (k+2)≥((n+1)!)^(n+1)   ⇒ Π_(k=1) ^(n+1) (2k)! ≥ ((n+1)!)^(n+1)  ✓                               .........Le puissant............
1)2!((1+1)!)12!2!2!4!((2+1)!)24836nk=1(2k)!((n+1)!)nnk=1(2k)!(2n+2)!((n+1)!)n(2n+2)!n+1k=1(2k)!((n+1)!)n+12nk=n(k+2)((n+1)!)n+1n+1k=1(2k)!((n+1)!)n+1Lepuissant

Leave a Reply

Your email address will not be published. Required fields are marked *