1-Proven-that-by-all-n-N-2-4-2n-n-1-n-2-Proven-by-recurring-that-p-1-n-pp-n-1-1- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 158340 by LEKOUMA last updated on 02/Nov/21 1)Proventhatbyalln∈N∗2!4!..(2n)!⩾((n+1)!)n2)Provenbyrecurringthat∑p=1npp!=(n+1)!−1 Answered by puissant last updated on 03/Nov/21 2)∑np=1pp!=∑np=1{(p+1)−1}p!=(p+1)!−p!=2!−1!+3!−2!+…..+n!−(n−1)!+(n+1)!−n!=(n+1)!−1.. Answered by puissant last updated on 03/Nov/21 1)★2!⩾((1+1)!)1→2!⩾2!✓★2!4!⩾((2+1)!)2→48⩾36✓∏nk=1(2k)!⩾((n+1)!)n⇒∏nk=1(2k)!(2n+2)!⩾((n+1)!)n(2n+2)!⇒∏n+1k=1(2k)!⩾((n+1)!)n+1∏2nk=n(k+2)⩾((n+1)!)n+1⇒∏n+1k=1(2k)!⩾((n+1)!)n+1✓………Lepuissant………… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-92807Next Next post: Question-158341 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.