Menu Close

1-s-2-5-2-s-8-ds-




Question Number 127349 by bemath last updated on 29/Dec/20
 ∫ (((1−s^2 )^(5/2) )/s^8 ) ds =?
$$\:\int\:\frac{\left(\mathrm{1}−{s}^{\mathrm{2}} \right)^{\mathrm{5}/\mathrm{2}} }{{s}^{\mathrm{8}} }\:{ds}\:=? \\ $$
Commented by liberty last updated on 29/Dec/20
waw ... il-mistoqsija tiegħek hija interessanti ħafna
Answered by liberty last updated on 29/Dec/20
I=∫ ((s^5 (s^(−2) −1)^(5/2) )/s^8 ) ds   I=∫ s^(−3) (s^(−2) −1)^(5/2)  ds    let μ = s^(−2) −1 ⇒dμ = −2s^(−3)  ds   I=−(1/2)∫ μ^(5/2)  dμ = −(1/7)μ^(7/2)  + c  I=−(1/7)(((1−s^2 )/s^2 ))^(7/2) +c = −(((1−s^2 )^(7/2) )/s^7 ) + c
$${I}=\int\:\frac{{s}^{\mathrm{5}} \left({s}^{−\mathrm{2}} −\mathrm{1}\right)^{\mathrm{5}/\mathrm{2}} }{{s}^{\mathrm{8}} }\:{ds}\: \\ $$$${I}=\int\:{s}^{−\mathrm{3}} \left({s}^{−\mathrm{2}} −\mathrm{1}\right)^{\mathrm{5}/\mathrm{2}} \:{ds}\: \\ $$$$\:{let}\:\mu\:=\:{s}^{−\mathrm{2}} −\mathrm{1}\:\Rightarrow{d}\mu\:=\:−\mathrm{2}{s}^{−\mathrm{3}} \:{ds}\: \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}}\int\:\mu^{\mathrm{5}/\mathrm{2}} \:{d}\mu\:=\:−\frac{\mathrm{1}}{\mathrm{7}}\mu^{\mathrm{7}/\mathrm{2}} \:+\:{c} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{7}}\left(\frac{\mathrm{1}−{s}^{\mathrm{2}} }{{s}^{\mathrm{2}} }\right)^{\mathrm{7}/\mathrm{2}} +{c}\:=\:−\frac{\left(\mathrm{1}−{s}^{\mathrm{2}} \right)^{\mathrm{7}/\mathrm{2}} }{{s}^{\mathrm{7}} }\:+\:{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *