Menu Close

1-sec-x-lt-2tan-x-on-0-2pi-2-find-the-cirtical-points-and-the-range-of-f-x-x-3-2x-1-




Question Number 84627 by M±th+et£s last updated on 14/Mar/20
1)∣sec(x)∣<2tan(x) on[0,2π]    2)find the cirtical points and the range of  f(x)=∣x−3∣+∣2x+1∣
$$\left.\mathrm{1}\right)\mid{sec}\left({x}\right)\mid<\mathrm{2}{tan}\left({x}\right)\:{on}\left[\mathrm{0},\mathrm{2}\pi\right] \\ $$$$ \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{cirtical}\:{points}\:{and}\:{the}\:{range}\:{of} \\ $$$${f}\left({x}\right)=\mid{x}−\mathrm{3}\mid+\mid\mathrm{2}{x}+\mathrm{1}\mid \\ $$$$ \\ $$
Commented by TANMAY PANACEA last updated on 14/Mar/20
what is wuestion no 1
$${what}\:{is}\:{wuestion}\:{no}\:\mathrm{1} \\ $$
Commented by M±th+et£s last updated on 14/Mar/20
solve the inequality
$${solve}\:{the}\:{inequality} \\ $$
Answered by TANMAY PANACEA last updated on 14/Mar/20
2) f(x)=∣x−3∣+∣2x+1∣  critical value of x are 3,−0.5  f(x) =x−3+2x+1             =3x−2     when x>3             =7       when x=3             =−(x−3)−(2x+1)   x<−0.5              =−3x+2              =3.5   when x=−0.5              =−(x−3)+2x+1   when  3>x>−0.5             =x+4  so f(x)∈[3.5,∞)
$$\left.\mathrm{2}\right)\:{f}\left({x}\right)=\mid{x}−\mathrm{3}\mid+\mid\mathrm{2}{x}+\mathrm{1}\mid \\ $$$${critical}\:{value}\:{of}\:{x}\:{are}\:\mathrm{3},−\mathrm{0}.\mathrm{5} \\ $$$${f}\left({x}\right)\:={x}−\mathrm{3}+\mathrm{2}{x}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}{x}−\mathrm{2}\:\:\:\:\:{when}\:{x}>\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{7}\:\:\:\:\:\:\:{when}\:{x}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=−\left({x}−\mathrm{3}\right)−\left(\mathrm{2}{x}+\mathrm{1}\right)\:\:\:{x}<−\mathrm{0}.\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{3}{x}+\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}.\mathrm{5}\:\:\:{when}\:{x}=−\mathrm{0}.\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=−\left({x}−\mathrm{3}\right)+\mathrm{2}{x}+\mathrm{1}\:\:\:{when}\:\:\mathrm{3}>{x}>−\mathrm{0}.\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:={x}+\mathrm{4} \\ $$$${so}\:{f}\left({x}\right)\in\left[\mathrm{3}.\mathrm{5},\infty\right) \\ $$$$ \\ $$$$ \\ $$
Commented by jagoll last updated on 14/Mar/20

Leave a Reply

Your email address will not be published. Required fields are marked *