Question Number 94992 by Mr.D.N. last updated on 22/May/20

Answered by bobhans last updated on 22/May/20

Commented by Mr.D.N. last updated on 22/May/20
thank you nice solution��
Answered by Ar Brandon last updated on 22/May/20
![1\I=∫_0 ^π ((xdx)/((a^2 sin^2 x+b^2 cos^2 x)^2 )) x=π−u⇒dx=−du⇒I=∫_0 ^π (π/((a^2 sin^2 u+b^2 cos^2 u)^2 ))du−I ⇒2I=∫_0 ^π (π/((a^2 sin^2 x+b^2 cos^2 x)^2 ))dx=π∫_0 ^π ((sec^4 x)/((a^2 tan^2 x+b^2 )^2 ))dx ⇒2I=_(t=tanx) π∫_(+0) ^(−0) ((t^2 +1)/((a^2 t^2 +b^2 )^2 ))dt=π∫_(+0) ^(−0) [((1/a^2 )/(a^2 t^2 +b^2 ))+(((a^2 −b^2 )/a^2 )/((a^2 t^2 +b^2 )^2 ))]dt 2I=(π/(a^2 b^2 ))∫_(+0) ^(−0) (1/(((a/b)t)^2 +1))dt+((π(a^2 −b^2 ))/(a^2 b^4 ))∫_(+0) ^(−0) (1/([((a/b)t)^2 +1]^2 ))dt 2I=(π/(a^3 b))[tan^(−1) ((a/b)t)]_(+0) ^(−0) +((π(a^2 −b^2 ))/(a^2 b^4 ))∫_0 ^π (((b/a)sec^2 θ)/(sec^4 θ))dθ =(π^2 /(a^3 b))+((π(a^2 −b^2 ))/(2a^3 b^3 ))∫_0 ^π (1+cos 2θ)dθ=(π^2 /(a^3 b))+((π(a^2 −b^2 ))/(2a^3 b^3 ))[θ+((sin2θ)/2)]_0 ^π =(π^2 /(a^3 b))+((π^2 (a^2 −b^2 ))/(2a^3 b^3 ))=((2π^2 b^2 +a^2 π^2 −π^2 b^2 )/(2a^3 b^3 ))=((π^2 (a^2 +b^2 ))/(2a^3 b^3 )) ⇒∫_0 ^π ((xdx)/((a^2 sin^2 x+b^2 cos^2 x)^2 ))=((π^2 (a^2 +b^2 ))/(4a^3 b^3 ))](https://www.tinkutara.com/question/Q95019.png)
Commented by Mr.D.N. last updated on 22/May/20
![lim is all[right you might be mistek some way]](https://www.tinkutara.com/question/Q95021.png)
Commented by Ar Brandon last updated on 22/May/20
Okay let's check my solution and see if I might have made some mistakes.
Commented by niroj last updated on 22/May/20
let me solve then you find your correction just taken few time then you find easily where is a error....��
Commented by Ar Brandon last updated on 22/May/20
Okay, I'm grateful. Thanks
Commented by Ar Brandon last updated on 22/May/20
Hey hold on. I wanna give it a last try.����
Commented by Ar Brandon last updated on 22/May/20
Thanks for your patience Mr. Niroj ��
Commented by Ar Brandon last updated on 22/May/20
I found my mistake.�� It was necessary for me to respect the signs. That is, distinguish between –0 and +0��
Answered by niroj last updated on 22/May/20
![1. I= ∫_0 ^( π) (( xdx)/((a^2 sin^2 x+b^2 cos^2 x)^2 )) .....(i) = ∫_0 ^( π) (((π−x)dx)/({a^2 sin^2 (π−a)+b^2 cos^2 (π−a)}^2 )) I = ∫_0 ^( π) (((π−x)dx)/((a^2 sin^2 x+b^2 cos^2 x)^2 ))....(ii) Added (i)+(ii) 2I= ∫_0 ^π (π/((a^2 sin^2 x+b^2 cos^2 x)^2 ))dx I= (π/2)×2∫_0 ^( (π/2)) (( 1)/((a^2 sin^2 x+b^2 cos^2 x)^2 ))dx = π ∫_0 ^( (π/2)) (( 1)/((a^2 sin^2 x+b^2 cos^2 x)^2 ))dx Divide numerator& denominator by (1/(cos^4 x)) = π∫_0 ^( (π/2)) (( sec^4 xdx)/({(1/(cos^2 x))(a^2 sin^2 x+b^2 cos^2 x)}^2 )) = π ∫_0 ^( (π/2)) (((tan^2 x+1) sec^2 x dx)/((a^2 tan^2 x+b^2 )^2 )) Put tan x = t sec^2 xdx=dt If x=(π/2) ⇒ t=∞ If x=0 ⇒ t=0 Now, π∫_0 ^( ∞) (((t^2 +1)dt)/((a^2 t^2 +b^2 )^2 )) = (π/a^2 )∫_0 ^( ∞) ((a^2 t^2 +a^2 )/((a^2 t^2 +b^2 )^2 ))dt = (π/a^2 ) ∫_(0 ) ^( ∞) (( (a^2 −b^2 )+(a^2 t^2 +b^2 ))/((a^2 t^2 +b^2 )^2 ))dt = (π/a^2 )∫_0 ^( ∞) (((a^2 −b^2 ))/((a^2 t^2 +b^2 )^2 ))dt+ (π/a^2 )∫_0 ^∞ (1/(a^2 t^2 +b^2 ))dt = ((π(a^2 −b^2 ))/a^2 )∫_0 ^( ∞) (1/((a^2 t^2 +b^2 )^2 ))dt+(π/(a^2 .a^2 ))∫_0 ^∞ (1/((t)^2 +((b/a))^2 ))dt here, I= I_1 +I_2 I_1 = ((π(a^2 −b^2 ))/a^2 )∫_0 ^( ∞) (1/((a^2 t^2 +b^2 )^2 ))dt Put, at= b tanθ adt= b sec^2 θdθ dt= (b/a) sec^2 θdθ If t=∞ ⇒ θ= (π/2) If t=0 ⇒ θ=0 ((π(a^2 −b^2 ))/a^2 )(b/a)∫_0 ^( (π/2)) ((sec^2 θdθ)/((b^2 tan^2 θ+b^2 )^2 )) = ((π(a^2 −b^2 )b)/a^3 )∫_0 ^(π/2) ((sec^2 θdθ)/(b^4 .sec^4 θ)) = ((π(a^2 −b^2 ))/(a^3 b^3 ))∫_0 ^(π/2) cos^2 θdθ cos2θ= 1−2cos^2 θ⇒ cos^2 θ =((1−cos2θ)/2) [ (1/2)∫(1−cos2θ)dθ]_0 ^(π/2) = [ (1/2)(θ − ((sin2θ)/2))]_0 ^(π/2) ⇒ [(1/2)((π/2)−((sin2×(π/2))/2))−0] = (π/4) I_1 = ((π(a^2 −b^2 ))/(a^3 b^3 ))×(π/4) Again for I_2 = (π/a^4 )[ (1/(b/a)) tan^(−1) (t/(b/a))]_0 ^∞ = (π/a^4 )[ (a/b)tan^(−1) ((at)/b)]_0 ^∞ = (π/a^4 )[ (a/b)×(π/2)−0] = (π^2 /(2a^3 b)) Now complete solution I= I_1 +I_2 = ((π^2 (a^2 −b^2 ))/(4a^3 b^3 ))+ (π^2 /(2a^3 b)) = (π^2 /(2a^3 b))(((a^2 −b^2 )/(2b^2 ))+1) = (π^2 /(2a^3 b))(((a^2 −b^2 +2b^2 )/(2b^2 ))) = ((π^2 (a^2 +b^2 ))/(4a^3 b^3 )) //. Which is required to proof.](https://www.tinkutara.com/question/Q95046.png)
Commented by Mr.D.N. last updated on 22/May/20
Thanks for all of you to presents your ability it's really I appreciate.. ������
Answered by niroj last updated on 22/May/20

Commented by Mr.D.N. last updated on 22/May/20
what nice outstanding��������