Menu Close

1-show-that-1-1-dx-x-2-2x-2-ln-5-2-2-determine-1-dx-x-1-x-3-test-the-convergence-of-the-series-given-by-r-1-r-1-r-e-r-4-obtain-3-non-zero-te




Question Number 174421 by ali009 last updated on 31/Jul/22
1) show that  ∫_(−1) ^1 ((−dx)/( (√(x^2 +2x+2))))=ln((√5)−2)  2)  determine  ∫_1 ^∞ (dx/((x+1)(√x)))  3) test the convergence of the series given by  Σ_(r=1) ^∞ (((r+1)!)/(r!(e^r )))  4)  obtain 3 non zero terms of maclaurrins  series for sin^2 (x),hence evaluate   ∫_0 ^(0.5) ((sin^2 (x))/x^2 )dx  given your answer correct to 4 decimal  places
$$\left.\mathrm{1}\right)\:{show}\:{that} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{−{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}}={ln}\left(\sqrt{\mathrm{5}}−\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right) \\ $$$${determine} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}}} \\ $$$$\left.\mathrm{3}\right)\:{test}\:{the}\:{convergence}\:{of}\:{the}\:{series}\:{given}\:{by} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({r}+\mathrm{1}\right)!}{{r}!\left({e}^{{r}} \right)} \\ $$$$\left.\mathrm{4}\right) \\ $$$${obtain}\:\mathrm{3}\:{non}\:{zero}\:{terms}\:{of}\:{maclaurrins} \\ $$$${series}\:{for}\:{sin}^{\mathrm{2}} \left({x}\right),{hence}\:{evaluate}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$${given}\:{your}\:{answer}\:{correct}\:{to}\:\mathrm{4}\:{decimal} \\ $$$${places} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *