Menu Close

1-Show-that-i-0-n-L-i-x-1-2-Show-that-i-0-n-L-i-x-x-i-k-x-k-k-n-




Question Number 116253 by I want to learn more last updated on 02/Oct/20
(1)    Show that    Σ_(i  =  0) ^n  L_i (x)   =   1  (2)    Show that    Σ_(i  =  0) ^n  L_i (x). x_i ^k    =   x^k ,        k ≤ n
$$\left(\mathrm{1}\right)\:\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\underset{\mathrm{i}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{L}_{\mathrm{i}} \left(\mathrm{x}\right)\:\:\:=\:\:\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\underset{\mathrm{i}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{L}_{\mathrm{i}} \left(\mathrm{x}\right).\:\mathrm{x}_{\mathrm{i}} ^{\mathrm{k}} \:\:\:=\:\:\:\mathrm{x}^{\mathrm{k}} ,\:\:\:\:\:\:\:\:\mathrm{k}\:\leqslant\:\mathrm{n} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *