Menu Close

1-show-that-lim-n-2-2022-n-2-3-n-0-




Question Number 173401 by DAVONG last updated on 11/Jul/22
1.show that lim_(n→+∝) ((2^(2022) n^2 )/3^n )=0 ?
$$\mathrm{1}.\mathrm{show}\:\mathrm{that}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\frac{\mathrm{2}^{\mathrm{2022}} \mathrm{n}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} }=\mathrm{0}\:? \\ $$
Commented by alephzero last updated on 11/Jul/22
lim_(n→∞) ((2^(2022) n^2 )/3^n ) = 2^(2022)  lim_(n→∞) (n^2 /3^n ) = 2^(2022) ×0  = 0  ★lim_(n→∞) (n^a /α^n ) = 0 ∀a ∀α
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{\mathrm{2022}} {n}^{\mathrm{2}} }{\mathrm{3}^{{n}} }\:=\:\mathrm{2}^{\mathrm{2022}} \:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}^{\mathrm{2}} }{\mathrm{3}^{{n}} }\:=\:\mathrm{2}^{\mathrm{2022}} ×\mathrm{0} \\ $$$$=\:\mathrm{0} \\ $$$$\bigstar\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}^{{a}} }{\alpha^{{n}} }\:=\:\mathrm{0}\:\forall{a}\:\forall\alpha \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *