Menu Close

1-simplify-A-n-1-2-i-3-n-1-2-i-3-n-2-smplify-B-n-1-2-3-n-1-2-3-n-n-integr-natural-




Question Number 49952 by maxmathsup by imad last updated on 12/Dec/18
1) simplify A_n = (1/((2+i(√3))^n )) +(1/((2−i(√3))^n ))  2) smplify  B_n =(1/((2+(√3))^n )) +(1/((2−(√3))^n ))  n integr natural.
1)simplifyAn=1(2+i3)n+1(2i3)n2)smplifyBn=1(2+3)n+1(23)nnintegrnatural.
Commented by Abdo msup. last updated on 14/Dec/18
1) we have A_n = (((2+i(√3))^n  +(2−i(√3))^n )/7^n )  =((2Re( (2+i(√3))^n ))/7^n )  but 2+i(√3)=(√7)((2/( (√7))) +((i(√3))/( (√7)))) =r e^(iθ)  ⇒  r=(√7)and cosθ =(2/( (√7))) ,sinθ =((√3)/( (√7))) ⇒tanθ =((√3)/2) ⇒θ =arctan(((√3)/2))  ⇒(2+i(√3))^n  =((√7))^n  e^(in arctan(((√3)/2)))    ⇒((2((√7))^n cos(narctan(((√3)/2))))/7^n )  = (2/(((√7))^n )) cos(n arctan(((√3)/2))).
1)wehaveAn=(2+i3)n+(2i3)n7n=2Re((2+i3)n)7nbut2+i3=7(27+i37)=reiθr=7andcosθ=27,sinθ=37tanθ=32θ=arctan(32)(2+i3)n=(7)neinarctan(32)2(7)ncos(narctan(32))7n=2(7)ncos(narctan(32)).
Commented by Abdo msup. last updated on 14/Dec/18
2) we hsve B_n =(((2+(√3))^n  +(2−(√3))^n )/((2^2  −((√3))^2 )^n ))  = Σ_(k=0) ^n  C_n ^k  2^(n−k)  ((√3))^k  +Σ_(k=0) ^n   C_n ^k  2^(n−k) (−(√3))^k   =Σ_(k=0) ^n  C_n ^k  { ((√3))^k  +(−(√3))^k )2^(n−k)   =Σ_(p=0) ^([(n/2)])   C_n ^(2p)     {3^p  +3^p ) 2^(n−2p)   =2^(n+1)  Σ_(p=0) ^([(n/2)])   ((3/4))^p C_n ^(2p)
2)wehsveBn=(2+3)n+(23)n(22(3)2)n=k=0nCnk2nk(3)k+k=0nCnk2nk(3)k=k=0nCnk{(3)k+(3)k)2nk=p=0[n2]Cn2p{3p+3p)2n2p=2n+1p=0[n2](34)pCn2p

Leave a Reply

Your email address will not be published. Required fields are marked *