Menu Close

1-simplify-S-n-x-k-1-n-sin-2-kx-2-simplify-A-n-k-1-n-sin-2-kpi-n-




Question Number 39332 by abdo mathsup 649 cc last updated on 05/Jul/18
1) simplify S_n (x)=Σ_(k=1) ^n  sin^2 (kx)  2)simplify  A_n =Σ_(k=1) ^n  sin^2 (((kπ)/n))
1)simplifySn(x)=k=1nsin2(kx)2)simplifyAn=k=1nsin2(kπn)
Commented by math khazana by abdo last updated on 09/Jul/18
1) we have S_n (x)=Σ_(k=0) ^n   ((1−cos(2kx))/2)  = ((n+1)/2) −(1/2) Σ_(k=0) ^n  cos(2kx) but  Σ_(k=0) ^n  cos(2kx) = Re(Σ_(k=0) ^n  e^(i2kx) )  Σ_(k=0) ^n  e^(i2kx)  =Σ_(k=0) ^n  (e^(i2x) )^k  = ((1− e^(i2(n+1)x) )/(1−e^(i2x) ))  =((1 −cos2(n+1)x −i sin2(n+1)x)/(1−cos(2x)−i sin(2x)))  = ((2sin^2 (n+1)x −2i sin(n+1)x cos(n+1)x)/(2sin^2 x −2i sinx cosx))  =((−isin(n+1)x{cos(n+1)x +isin(n+1)x})/(−isinx{cosx +isinx}))  =((sin(n+1)x)/(sinx)) e^(i(n+1)x)  e^(−ix)   = ((sin(n+1)x)/(sinx)) {cos(nx) +i sinx} ⇒  Σ_(k=0) ^n  cos(2kx) = ((sin(n+1)x)/(sinx)) cos(nx) ⇒  S_n (x) =((n+1)/2) −((sin(n+1)x cos(nx))/(2sinx)) .  2) A_n =S_n ((π/n)) =((n+1)/2) −((sin(n+1)(π/n) cos(n(π/n)))/(2sin((π/n))))  =((n+1)/2) + ((sin(π +(π/n)))/(2sin((π/n)))) =((n+1)/2) +((−sin((π/n)))/(2sin((π/n))))  =((n+1)/2) −(1/2)  = (n/2) ⇒  A_n = (n/2) .
1)wehaveSn(x)=k=0n1cos(2kx)2=n+1212k=0ncos(2kx)butk=0ncos(2kx)=Re(k=0nei2kx)k=0nei2kx=k=0n(ei2x)k=1ei2(n+1)x1ei2x=1cos2(n+1)xisin2(n+1)x1cos(2x)isin(2x)=2sin2(n+1)x2isin(n+1)xcos(n+1)x2sin2x2isinxcosx=isin(n+1)x{cos(n+1)x+isin(n+1)x}isinx{cosx+isinx}=sin(n+1)xsinxei(n+1)xeix=sin(n+1)xsinx{cos(nx)+isinx}k=0ncos(2kx)=sin(n+1)xsinxcos(nx)Sn(x)=n+12sin(n+1)xcos(nx)2sinx.2)An=Sn(πn)=n+12sin(n+1)πncos(nπn)2sin(πn)=n+12+sin(π+πn)2sin(πn)=n+12+sin(πn)2sin(πn)=n+1212=n2An=n2.

Leave a Reply

Your email address will not be published. Required fields are marked *