1-simplify-S-n-x-k-1-n-sin-2-kx-2-simplify-A-n-k-1-n-sin-2-kpi-n- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 39332 by abdo mathsup 649 cc last updated on 05/Jul/18 1)simplifySn(x)=∑k=1nsin2(kx)2)simplifyAn=∑k=1nsin2(kπn) Commented by math khazana by abdo last updated on 09/Jul/18 1)wehaveSn(x)=∑k=0n1−cos(2kx)2=n+12−12∑k=0ncos(2kx)but∑k=0ncos(2kx)=Re(∑k=0nei2kx)∑k=0nei2kx=∑k=0n(ei2x)k=1−ei2(n+1)x1−ei2x=1−cos2(n+1)x−isin2(n+1)x1−cos(2x)−isin(2x)=2sin2(n+1)x−2isin(n+1)xcos(n+1)x2sin2x−2isinxcosx=−isin(n+1)x{cos(n+1)x+isin(n+1)x}−isinx{cosx+isinx}=sin(n+1)xsinxei(n+1)xe−ix=sin(n+1)xsinx{cos(nx)+isinx}⇒∑k=0ncos(2kx)=sin(n+1)xsinxcos(nx)⇒Sn(x)=n+12−sin(n+1)xcos(nx)2sinx.2)An=Sn(πn)=n+12−sin(n+1)πncos(nπn)2sin(πn)=n+12+sin(π+πn)2sin(πn)=n+12+−sin(πn)2sin(πn)=n+12−12=n2⇒An=n2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-a-3-1-b-3-1-x-3-1-y-3-1-z-3-Next Next post: Question-170407 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.