Question Number 157884 by HongKing last updated on 29/Oct/21
$$\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{10}°\right)}\:-\:\mathrm{4}\:\mathrm{sin}\left(\mathrm{70}°\right)\:=\:? \\ $$
Answered by tounghoungko last updated on 29/Oct/21
$$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{10}°}−\mathrm{4}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cos}\:\mathrm{10}°+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{10}°\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{10}°}−\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{10}°−\mathrm{2sin}\:\mathrm{10}° \\ $$$$=\frac{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{10}°\:\mathrm{cos}\:\mathrm{10}°−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{10}°}{\mathrm{sin}\:\mathrm{10}°} \\ $$$$=\frac{\mathrm{1}−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{20}°−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{20}°\right)}{\mathrm{sin}\:\mathrm{10}°} \\ $$$$=\frac{\mathrm{cos}\:\mathrm{20}°−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{20}°}{\mathrm{sin}\:\mathrm{10}°} \\ $$$$=\frac{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{20}°−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{sin}\:\mathrm{20}°\right)}{\mathrm{sin}\:\mathrm{10}°} \\ $$$$=\frac{\mathrm{2cos}\:\mathrm{80}°}{\mathrm{sin}\:\mathrm{10}°}\:=\:\mathrm{2}\:. \\ $$
Commented by HongKing last updated on 29/Oct/21
$$\mathrm{alot}\:\mathrm{thankyou}\:\mathrm{sir} \\ $$