Question Number 91534 by M±th+et+s last updated on 01/May/20
$$\int_{\mathrm{1}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 01/May/20
$${we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:+\int_{\mathrm{1}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:\:{we}\:{have}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:=\left[−\frac{\mathrm{1}}{{x}}{sin}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{x}}\left(\mathrm{2}{sinx}\right){cosx}\:{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:=_{\mathrm{2}{x}={t}} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sint}}{\frac{{t}}{\mathrm{2}}}×\frac{{dt}}{\mathrm{2}}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sint}}{{t}}{dt}\:=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:=\left[−\frac{\mathrm{1}}{{x}}{sin}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{x}}\left(\mathrm{2}{sinx}\right){cosx}\:{dx} \\ $$$$=−{sin}^{\mathrm{2}} \left(\mathrm{1}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:=−{sin}^{\mathrm{2}} \left(\mathrm{1}\right)+\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{sint}}{{t}}{dt}\:\:\:\:\:\left({t}=\mathrm{2}{x}\right) \\ $$$${we}\:{have}\:{sint}\:={t}−\frac{{t}^{\mathrm{3}} }{\mathrm{6}}\:+{o}\left({t}^{\mathrm{3}} \right)\:\Rightarrow{t}−\frac{{t}^{\mathrm{3}} }{\mathrm{6}}\leqslant{sint}\:\leqslant{t}\:\Rightarrow \\ $$$$\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{6}}\leqslant\frac{{sint}}{{t}}\leqslant\mathrm{1}\:\Rightarrow\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{6}}\right){dt}\leqslant\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{sint}}{{t}}{dt}\leqslant\mathrm{2}\:\Rightarrow \\ $$$$\left[{t}−\frac{{t}^{\mathrm{3}} }{\mathrm{18}}\right]_{\mathrm{0}} ^{\mathrm{2}} \:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{sint}}{{t}}{dt}\:\leqslant\mathrm{2}\:\Rightarrow\frac{\mathrm{14}}{\mathrm{9}}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{sint}}{{t}}\:\leqslant\mathrm{2}\:\:\Rightarrow \\ $$$${v}_{\mathrm{0}} =\frac{\mathrm{7}}{\mathrm{9}}\:+\mathrm{1}\:=\frac{\mathrm{16}}{\mathrm{9}}\:{is}\:{approximate}\:{value}\:{for}\:{this}\:{integral}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:\sim\:\:\frac{\pi}{\mathrm{2}}\:+{sin}^{\mathrm{2}} \left(\mathrm{1}\right)−\frac{\mathrm{16}}{\mathrm{9}} \\ $$$$ \\ $$
Commented by M±th+et+s last updated on 01/May/20
$${great}\:{solution}\:{thanx}\:{sir} \\ $$
Commented by mathmax by abdo last updated on 01/May/20
$${you}\:{are}\:{welcome} \\ $$