Menu Close

1-sin-pi-7-3-cos-2x-sin-pi-14-cos-pi-14-10-sin-x-find-solution-




Question Number 78785 by jagoll last updated on 20/Jan/20
    (1+sin (π/7))^(3−cos 2x) = (sin (π/(14))+cos (π/(14)))^(10 sin x)   find solution
$$ \\ $$$$ \\ $$$$\left(\mathrm{1}+\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\right)^{\mathrm{3}−\mathrm{cos}\:\mathrm{2x}} =\:\left(\mathrm{sin}\:\frac{\pi}{\mathrm{14}}+\mathrm{cos}\:\frac{\pi}{\mathrm{14}}\right)^{\mathrm{10}\:\mathrm{sin}\:\mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{solution} \\ $$
Answered by john santu last updated on 20/Jan/20
consider 1+sin (π/7)=(sin (π/(14))+cos (π/(14)))^2   ⇒(sin (π/(14))+cos (π/(14)))^(6−2cos 2x) = (sin (π/(14))+cos (π/(14)))^(10 sin x)   ⇒6 − 2cos 2x = 10 sin x  −2(1−2sin^2 x)+6−10sin x=0  4sin^2 x−10sin x+4=0  2sin^2 x−5sin x+2=0  (2sin x−1)(sin x−2)=0  sin x=(1/2)  { ((x=(π/6)+2nπ)),((x=((5π)/6)+2nπ)) :}
$${consider}\:\mathrm{1}+\mathrm{sin}\:\frac{\pi}{\mathrm{7}}=\left(\mathrm{sin}\:\frac{\pi}{\mathrm{14}}+\mathrm{cos}\:\frac{\pi}{\mathrm{14}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{sin}\:\frac{\pi}{\mathrm{14}}+\mathrm{cos}\:\frac{\pi}{\mathrm{14}}\right)^{\mathrm{6}−\mathrm{2cos}\:\mathrm{2}{x}} =\:\left(\mathrm{sin}\:\frac{\pi}{\mathrm{14}}+\mathrm{cos}\:\frac{\pi}{\mathrm{14}}\right)^{\mathrm{10}\:\mathrm{sin}\:{x}} \\ $$$$\Rightarrow\mathrm{6}\:−\:\mathrm{2cos}\:\mathrm{2}{x}\:=\:\mathrm{10}\:\mathrm{sin}\:{x} \\ $$$$−\mathrm{2}\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}\right)+\mathrm{6}−\mathrm{10sin}\:{x}=\mathrm{0} \\ $$$$\mathrm{4sin}\:^{\mathrm{2}} {x}−\mathrm{10sin}\:{x}+\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{2sin}\:^{\mathrm{2}} {x}−\mathrm{5sin}\:{x}+\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{2sin}\:{x}−\mathrm{1}\right)\left(\mathrm{sin}\:{x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\:\begin{cases}{{x}=\frac{\pi}{\mathrm{6}}+\mathrm{2}{n}\pi}\\{{x}=\frac{\mathrm{5}\pi}{\mathrm{6}}+\mathrm{2}{n}\pi}\end{cases} \\ $$
Commented by jagoll last updated on 20/Jan/20
thanks sir
$$\mathrm{thanks}\:\mathrm{sir} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *