Menu Close

1-sin-x-cos-x-dx-




Question Number 25777 by abhishekkumar22121999@gmail.co last updated on 14/Dec/17
∫(1/(sin x+cos x))dx
$$\int\frac{\mathrm{1}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{dx} \\ $$
Answered by mrW1 last updated on 14/Dec/17
=∫(1/( (√2)(sin x cos (π/4)+sin (π/4) cos x))) dx  =∫(1/( (√2) sin (x+(π/4)))) dx  =(1/(2(√2)))×ln ((1−cos (x+(π/4)))/(1+cos (x+(π/4))))+C
$$=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\left(\mathrm{sin}\:{x}\:\mathrm{cos}\:\frac{\pi}{\mathrm{4}}+\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\:\mathrm{cos}\:{x}\right)}\:{dx} \\ $$$$=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\mathrm{ln}\:\frac{\mathrm{1}−\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}+\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *