Question Number 84607 by M±th+et£s last updated on 14/Mar/20
$$\left.\mathrm{1}\right)\int\sqrt{{sin}\left({x}\right)}\:{dx} \\ $$$$\left.\mathrm{2}\right)\int{cos}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$ \\ $$
Commented by john santu last updated on 14/Mar/20
$$\mathrm{oo}\:\mathrm{yes}…\:\mathrm{it}\:\mathrm{typo}.\: \\ $$
Answered by MJS last updated on 14/Mar/20
$$\int\sqrt{\mathrm{sin}\:{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{transforming}\:\mathrm{with}\:\mathrm{trigonometric}\:\mathrm{formulas}\right] \\ $$$$=\int\sqrt{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\frac{\mathrm{2}{x}−\pi}{\mathrm{4}}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{2}{x}−\pi}{\mathrm{4}}\:\rightarrow\:{dx}=\mathrm{2}{dt}\right] \\ $$$$=\mathrm{2}\int\sqrt{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:{t}}\:{dt}= \\ $$$$=\mathrm{2E}\:\left({t}\:\:\mid\mathrm{2}\right)\:= \\ $$$$=\mathrm{2E}\:\left(\frac{\mathrm{2}{x}−\pi}{\mathrm{4}}\:\mid\:\mathrm{2}\right)\:+{C} \\ $$
Commented by M±th+et£s last updated on 14/Mar/20
$${thank}\:{you}\:{sir} \\ $$
Answered by MJS last updated on 14/Mar/20
$$\int\mathrm{cos}\:{x}^{\mathrm{2}} \:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\frac{\mathrm{2}}{\pi}}{x}\:\rightarrow\:{dx}=\sqrt{\frac{\pi}{\mathrm{2}}}{dt}\right] \\ $$$$=\sqrt{\frac{\pi}{\mathrm{2}}}\int\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}{t}^{\mathrm{2}} \right)\:{dt}= \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Fresnell}\:\mathrm{Integral} \\ $$$$=\sqrt{\frac{\pi}{\mathrm{2}}\:}\mathrm{C}\:\left({t}\right)\:=\sqrt{\frac{\pi}{\mathrm{2}}}\:\mathrm{C}\:\left(\sqrt{\frac{\mathrm{2}}{\pi}}{x}\right)\:+{C} \\ $$
Commented by M±th+et£s last updated on 14/Mar/20
$${thank}\:{you}\:{sir} \\ $$
Answered by TANMAY PANACEA last updated on 14/Mar/20
$${i}\:{think}\int\:\sqrt{{sinx}}\:{dx}\:{is}\:{elliptical}\:{intregal} \\ $$
Commented by M±th+et£s last updated on 14/Mar/20
$$\int\sqrt{{sin}\left({x}\right)}\:{dx}\:{is}\:{special}\:{integeral}\:{sir} \\ $$