Question Number 122883 by kolos last updated on 20/Nov/20
$$\sum_{\mathrm{1}} ^{\infty} \left(\frac{\mathrm{sin}\:\left(\mathrm{x}\right)}{\mathrm{x}}\right)=? \\ $$
Commented by Dwaipayan Shikari last updated on 20/Nov/20
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinx}}{{x}}=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{ix}} }{{x}}−\frac{\mathrm{1}}{\mathrm{2}{i}}\overset{\infty} {\sum}\frac{{e}^{−{ix}} }{{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(−{log}\left(\mathrm{1}−{e}^{{i}} \right)+{log}\left(\mathrm{1}−{e}^{−{i}} \right)\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(\frac{\mathrm{1}−{e}^{−{i}} }{\mathrm{1}−{e}^{{i}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(−{e}^{−{i}} \right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left({e}^{{i}\pi} \right)+\frac{\mathrm{1}}{\mathrm{2}{i}}\left({loge}^{−{i}} \right)=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by kolos last updated on 21/Nov/20
$$ \\ $$$${thank}\:{so}\:{much}\:,\:{every}\:{single}\:{one} \\ $$
Answered by TANMAY PANACEA last updated on 20/Nov/20
$${i}\:{think} \\ $$$${q}=\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinx}}{{x}} \\ $$$${p}=\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cosx}}{{x}} \\ $$$${p}+{iq}=\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{ix}} }{{x}}=\frac{{e}^{{i}} }{\mathrm{1}}+\frac{{e}^{\mathrm{2}{i}} }{\mathrm{2}}+\frac{{e}^{\mathrm{3}{i}} }{\mathrm{3}}+…\infty \\ $$$${p}+{iq}=−{ln}\left(\mathrm{1}−{e}^{{i}} \right)=−{ln}\left(\mathrm{1}−{cos}\mathrm{1}−{isin}\mathrm{1}\right) \\ $$$${p}+{iq}=−{ln}\left(\mathrm{2}{sin}^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}−{i}×\mathrm{2}{sin}\frac{\mathrm{1}}{\mathrm{2}}{xcos}\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${p}+{iq}=−{ln}\left\{−\mathrm{2}{sin}\frac{\mathrm{1}}{\mathrm{2}}\left({sin}\frac{\mathrm{1}}{\mathrm{2}}+{icos}\frac{\mathrm{1}}{\mathrm{2}}\right)\right\} \\ $$$${p}+{iq}=−{ln}\left\{\mathrm{2}{sin}\left(\pi+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({cos}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+{isin}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}\right. \\ $$$${p}+{iaq}=−{ln}\left(\mathrm{2}{sin}\left(\pi+\frac{\mathrm{1}}{\mathrm{2}}\right)\right)−{ln}\left({e}^{{i}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \right. \\ $$$${p}+{iq}=−{ln}\left(\mathrm{2}{sin}\left(\pi+\frac{\mathrm{1}}{\mathrm{2}}\right)−{i}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right. \\ $$$${q}=−\left(\frac{\pi−\mathrm{1}}{\mathrm{2}}\right) \\ $$$${ln}\left(\mathrm{1}−{t}\right)=−{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}−\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−\frac{{t}^{\mathrm{4}} }{\mathrm{4}}…\infty \\ $$$$−{ln}\left(\mathrm{1}−{t}\right)={t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+..\infty \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 20/Nov/20
$${In}\:{the}\:{same}\:{way} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cosx}}{{x}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{ix}} }{{x}}+\frac{{e}^{−{ix}} }{{x}}=\frac{\mathrm{1}}{\mathrm{2}}\left({log}\left(\frac{\mathrm{1}}{\left(\mathrm{1}−{e}^{{i}} \right)\left(\mathrm{1}−{e}^{−{i}} \right)}\right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{\mathrm{1}}{\mathrm{1}−\left({e}^{{i}} +{e}^{−{i}} \right)+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{\mathrm{1}}{\mathrm{2}−\mathrm{2}{cos}\left(\mathrm{1}\right)}\right) \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 21/Nov/20
$$\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{Q}\:\mathrm{is}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{n}\right)}{\mathrm{n}} \\ $$$$\mathrm{let}\:\mathrm{S}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{nx}\right)}{\mathrm{n}}\:\Rightarrow\mathrm{S}\left(\mathrm{x}\right)\:=\mathrm{Im}\left(\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{inx}} }{\mathrm{n}}\right) \\ $$$$\mathrm{w}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{inx}} }{\mathrm{n}}\:\Rightarrow\mathrm{w}^{'} \left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{in}\:\mathrm{e}^{\mathrm{inx}} }{\mathrm{n}}\:=\mathrm{i}\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{e}^{\mathrm{ix}} \right)^{\mathrm{n}} \\ $$$$\left.=\left.\mathrm{i}×\frac{\mathrm{1}}{\mathrm{1}−\mathrm{e}^{\mathrm{ix}} }\:\Rightarrow\mathrm{w}\left(\mathrm{x}\right)=−\mathrm{ln}\left(\mathrm{1}−\mathrm{e}^{\mathrm{ix}} \right)+\mathrm{c}\:\:\:\:\mathrm{with}\:\mathrm{w}\right)\mathrm{0}\right)=\mathrm{0}=\mathrm{c}\:\Rightarrow \\ $$$$\mathrm{w}\left(\mathrm{x}\right)=−\mathrm{ln}\left(\mathrm{1}−\mathrm{e}^{\mathrm{ix}} \right)\:\Rightarrow\mathrm{S}\left(\mathrm{x}\right)=\mathrm{Im}\left(−\mathrm{ln}\left(\mathrm{1}−\mathrm{e}^{\mathrm{ix}} \right)\right)\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{ln}\left(\mathrm{1}−\mathrm{e}^{\mathrm{ix}} \right)=\mathrm{ln}\left(\mathrm{1}−\mathrm{cosx}−\mathrm{isinx}\right)\:=\mathrm{ln}\left(\mathrm{2sin}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{2isin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right) \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{ln}\left(−\mathrm{isin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left(\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{isin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)=\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{ln}\left(−\mathrm{i}\right)+\mathrm{ln}\left(\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)+\mathrm{ln}\left(\mathrm{e}^{\frac{\mathrm{ix}}{\mathrm{2}}} \right)\right. \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)−\frac{\mathrm{i}\pi}{\mathrm{2}}+\mathrm{ln}\left(\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)+\frac{\mathrm{ix}}{\mathrm{2}}\:=\mathrm{ln}\left(\mathrm{2sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)+\frac{\mathrm{x}−\pi}{\mathrm{2}}\mathrm{i}\:\Rightarrow \\ $$$$\mathrm{S}\left(\mathrm{x}\right)=\frac{\pi−\mathrm{x}}{\mathrm{2}}\:\Rightarrow\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{n}\right)}{\mathrm{n}}\:=\mathrm{S}\left(\mathrm{1}\right)\:=\frac{\pi−\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mnjuly1970 last updated on 21/Nov/20
$$\:\Phi=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{sin}\left({n}\right)}{{n}}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{e}^{{in}} −{e}^{−{in}} }{{n}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left[−{ln}\left(\mathrm{1}−{e}^{{i}} \right)+{ln}\left(\mathrm{1}−{e}^{−{i}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}−{e}^{−{i}} }{\mathrm{1}−{e}^{{i}} }\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(−{e}^{−{i}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left[{i}\pi−{i}\right]=\frac{\pi−\mathrm{1}}{\mathrm{2}} \\ $$