Menu Close

1-sin-x-x-




Question Number 122883 by kolos last updated on 20/Nov/20
Σ_1 ^∞ (((sin (x))/x))=?
1(sin(x)x)=?
Commented by Dwaipayan Shikari last updated on 20/Nov/20
Σ_(n=1) ^∞ ((sinx)/x)=(1/(2i))Σ_(n=1) ^∞ (e^(ix) /x)−(1/(2i))Σ^∞ (e^(−ix) /x)                  =(1/(2i))(−log(1−e^i )+log(1−e^(−i) ))=(1/(2i))log(((1−e^(−i) )/(1−e^i )))  =(1/(2i))log(−e^(−i) )=(1/(2i))log(e^(iπ) )+(1/(2i))(loge^(−i) )=(π/2)−(1/2)
n=1sinxx=12in=1eixx12ieixx=12i(log(1ei)+log(1ei))=12ilog(1ei1ei)=12ilog(ei)=12ilog(eiπ)+12i(logei)=π212
Commented by kolos last updated on 21/Nov/20
  thank so much , every single one
thanksomuch,everysingleone
Answered by TANMAY PANACEA last updated on 20/Nov/20
i think  q=Σ_(x=1) ^∞ ((sinx)/x)  p=Σ_(x=1) ^∞ ((cosx)/x)  p+iq=Σ_(x=1) ^∞ (e^(ix) /x)=(e^i /1)+(e^(2i) /2)+(e^(3i) /3)+...∞  p+iq=−ln(1−e^i )=−ln(1−cos1−isin1)  p+iq=−ln(2sin^2 (1/2)−i×2sin(1/2)xcos(1/2))  p+iq=−ln{−2sin(1/2)(sin(1/2)+icos(1/2))}  p+iq=−ln{2sin(π+(1/2))(cos((π/2)−(1/2))+isin((π/2)−(1/2))}  p+iaq=−ln(2sin(π+(1/2)))−ln(e^(i((π/2)−(1/2)))   p+iq=−ln(2sin(π+(1/2))−i((π/2)−(1/2))  q=−(((π−1)/2))  ln(1−t)=−t−(t^2 /2)−(t^3 /3)−(t^4 /4)...∞  −ln(1−t)=t+(t^2 /2)+(t^3 /3)+..∞
ithinkq=x=1sinxxp=x=1cosxxp+iq=x=1eixx=ei1+e2i2+e3i3+p+iq=ln(1ei)=ln(1cos1isin1)p+iq=ln(2sin212i×2sin12xcos12)p+iq=ln{2sin12(sin12+icos12)}p+iq=ln{2sin(π+12)(cos(π212)+isin(π212)}p+iaq=ln(2sin(π+12))ln(ei(π212)p+iq=ln(2sin(π+12)i(π212)q=(π12)ln(1t)=tt22t33t44ln(1t)=t+t22+t33+..
Answered by Dwaipayan Shikari last updated on 20/Nov/20
In the same way  Σ_(n=1) ^∞ ((cosx)/x)=(1/2)Σ_(n=1) ^∞ (e^(ix) /x)+(e^(−ix) /x)=(1/2)(log((1/((1−e^i )(1−e^(−i) ))))  =(1/2)log((1/(1−(e^i +e^(−i) )+1)))=(1/2)log((1/(2−2cos(1))))
Inthesamewayn=1cosxx=12n=1eixx+eixx=12(log(1(1ei)(1ei))=12log(11(ei+ei)+1)=12log(122cos(1))
Answered by mathmax by abdo last updated on 21/Nov/20
i think the Q is Σ_(n=1) ^∞  ((sin(n))/n)  let S(x)=Σ_(n=1) ^∞  ((sin(nx))/n) ⇒S(x) =Im(Σ_(n=1) ^∞  (e^(inx) /n))  w(x)=Σ_(n=1) ^∞  (e^(inx) /n) ⇒w^′ (x)=Σ_(n=1) ^∞ ((in e^(inx) )/n) =iΣ_(n=1) ^∞  (e^(ix) )^n   =i×(1/(1−e^(ix) )) ⇒w(x)=−ln(1−e^(ix) )+c    with w)0)=0=c ⇒  w(x)=−ln(1−e^(ix) ) ⇒S(x)=Im(−ln(1−e^(ix) )) we have  ln(1−e^(ix) )=ln(1−cosx−isinx) =ln(2sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =ln(2)+ln(−isin((x/2))(cos((x/2))+isin((x/2)))=ln(2)+ln(−i)+ln(sin((x/2)))+ln(e^((ix)/2) )  =ln(2)−((iπ)/2)+ln(sin((x/2)))+((ix)/2) =ln(2sin((x/2)))+((x−π)/2)i ⇒  S(x)=((π−x)/2) ⇒Σ_(n=1) ^∞  ((sin(n))/n) =S(1) =((π−1)/2)
ithinktheQisn=1sin(n)nletS(x)=n=1sin(nx)nS(x)=Im(n=1einxn)w(x)=n=1einxnw(x)=n=1ineinxn=in=1(eix)n=i×11eixw(x)=ln(1eix)+cwithw)0)=0=cw(x)=ln(1eix)S(x)=Im(ln(1eix))wehaveln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2)+ln(isin(x2)(cos(x2)+isin(x2))=ln(2)+ln(i)+ln(sin(x2))+ln(eix2)=ln(2)iπ2+ln(sin(x2))+ix2=ln(2sin(x2))+xπ2iS(x)=πx2n=1sin(n)n=S(1)=π12
Answered by mnjuly1970 last updated on 21/Nov/20
 Φ=Σ_(n=1) ^∞ (((sin(n))/n))=(1/(2i))Σ_(n=1) ^∞ (((e^(in) −e^(−in) )/n))  =(1/(2i))[−ln(1−e^i )+ln(1−e^(−i) )]  =(1/(2i))ln(((1−e^(−i) )/(1−e^i )))=(1/(2i))ln(−e^(−i) )  =(1/(2i))[iπ−i]=((π−1)/2)
Φ=n=1(sin(n)n)=12in=1(eineinn)=12i[ln(1ei)+ln(1ei)]=12iln(1ei1ei)=12iln(ei)=12i[iπi]=π12

Leave a Reply

Your email address will not be published. Required fields are marked *