Menu Close

1-sin2x-1-sin2-2-x-1-sin2-n-x-Find-the-value-




Question Number 104122 by Dwaipayan Shikari last updated on 19/Jul/20
(1/(sin2x))+(1/(sin2^2 x))+.....+(1/(sin2^n x))  Find the value
1sin2x+1sin22x+..+1sin2nxFindthevalue
Answered by OlafThorendsen last updated on 19/Jul/20
(1/(sinu)) = ((sin(u−(u/2)))/(sinusin(u/2)))  (1/(sinu)) = ((sinucos(u/2)−sin(u/2)cosu)/(sinusin(u/2)))  (1/(sinu)) = ((cos(u/2))/(sin(u/2)))−((cosu)/(sinu))  (1/(sinu)) = cot(u/2)−cotu  u = 2^k x  (1/(sin2^k x)) = cot2^(k−1) x−cot2^k x  Σ_(k=1) ^n (1/(sin2^k x)) = Σ_(k=1) ^n cot2^(k−1) x−cot2^k x  = cotx−cot2x  +cot2x−cot4x  +...  +cot2^(n−1) x−cos2^n x  Σ_(k=1) ^n (1/(sin2^k x)) = cotx−cot2^n x
1sinu=sin(uu2)sinusinu21sinu=sinucosu2sinu2cosusinusinu21sinu=cosu2sinu2cosusinu1sinu=cotu2cotuu=2kx1sin2kx=cot2k1xcot2kxnk=11sin2kx=nk=1cot2k1xcot2kx=cotxcot2x+cot2xcot4x++cot2n1xcos2nxnk=11sin2kx=cotxcot2nx
Commented by Dwaipayan Shikari last updated on 19/Jul/20
Great sir!
Greatsir!

Leave a Reply

Your email address will not be published. Required fields are marked *