Menu Close

1-sinx-cosx-dx-




Question Number 152326 by mathdanisur last updated on 27/Aug/21
∫(√((1 + sinx)/(cosx))) dx = ?
$$\int\sqrt{\frac{\mathrm{1}\:+\:\mathrm{sin}\boldsymbol{\mathrm{x}}}{\mathrm{cos}\boldsymbol{\mathrm{x}}}}\:\mathrm{dx}\:=\:? \\ $$
Commented by puissant last updated on 27/Aug/21
=∫(√(secx+tanx))dx  Q151568
$$=\int\sqrt{{secx}+{tanx}}{dx} \\ $$$${Q}\mathrm{151568}\: \\ $$
Answered by peter frank last updated on 27/Aug/21
∫((sin (x/2)+cos (x/2))/( (√(cos x))))dx  ∫((sin (x/2))/( (√(cos x))))dx+∫((cos (x/2))/( (√(cos x))))dx
$$\int\frac{\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}}{\:\sqrt{\mathrm{cos}\:\mathrm{x}}}\mathrm{dx} \\ $$$$\int\frac{\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}}{\:\sqrt{\mathrm{cos}\:\mathrm{x}}}\mathrm{dx}+\int\frac{\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}}{\:\sqrt{\mathrm{cos}\:\mathrm{x}}}\mathrm{dx} \\ $$
Commented by Ar Brandon last updated on 27/Aug/21
=∫((sin(x/2))/( (√(2cos^2 (x/2)−1))))dx+∫((cos(x/2))/( (√(1−2sin^2 (x/2)))))dx   { ((u=(√2)cos(x/2))),((v=(√2)sin(x/2))) :}⇒ { ((du=−((√2)/2)sin(x/2)dx)),((dv=((√2)/2)cos(x/2)dx)) :}  =(√2)∫(dv/( (√(1−v^2 ))))−(√2)∫(du/( (√(u^2 −1))))  =(√2)arcsin(v)−(√2)argcosh(u)+C  =(√2)arcsin((√2)sin(x/2))−(√2)ln∣(√2)cos(x/2)+(√(2cos^2 (x/2)−1))∣+C
$$=\int\frac{\mathrm{sin}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}−\mathrm{1}}}{dx}+\int\frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}{dx} \\ $$$$\begin{cases}{{u}=\sqrt{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}}}\\{{v}=\sqrt{\mathrm{2}}\mathrm{sin}\frac{{x}}{\mathrm{2}}}\end{cases}\Rightarrow\begin{cases}{{du}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{sin}\frac{{x}}{\mathrm{2}}{dx}}\\{{dv}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}}{dx}}\end{cases} \\ $$$$=\sqrt{\mathrm{2}}\int\frac{{dv}}{\:\sqrt{\mathrm{1}−{v}^{\mathrm{2}} }}−\sqrt{\mathrm{2}}\int\frac{{du}}{\:\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\sqrt{\mathrm{2}}\mathrm{arcsin}\left({v}\right)−\sqrt{\mathrm{2}}\mathrm{argcosh}\left({u}\right)+{C} \\ $$$$=\sqrt{\mathrm{2}}\mathrm{arcsin}\left(\sqrt{\mathrm{2}}\mathrm{sin}\frac{{x}}{\mathrm{2}}\right)−\sqrt{\mathrm{2}}\mathrm{ln}\mid\sqrt{\mathrm{2}}\mathrm{cos}\frac{{x}}{\mathrm{2}}+\sqrt{\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}−\mathrm{1}}\mid+{C} \\ $$
Commented by mathdanisur last updated on 27/Aug/21
Thank You Ser
$$\mathrm{Thank}\:\mathrm{You}\:\mathrm{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *