Menu Close

1-Solve-for-the-linear-system-x-2y-3z-5-2x-y-4z-0-3x-4y-11z-5-2-Ghana-railways-co-operation-has-20-trains-for-it-s-operations-It-is-observed-that-x-trains-can-accommodate-2-passengers-y-trains-




Question Number 186099 by akuba last updated on 01/Feb/23
1. Solve for the linear system:  x−2y+3z=5  2x+y−4z=0  3x+4y−11z=−5  2. Ghana railways co−operation has 20   trains for it′s operations. It is observed that  x trains can accommodate 2 passengers,  y trains 3 passengers and z trains 5   passengers. Howeer, the totsl number of  passrngers always present at Ghana   railways are 64. During market day, 3 of  x trains, 2 of y trains and 4 of z trains for   a total of 10 trains were used. Determine   the values of x, y and z.
$$\mathrm{1}.\:{Solve}\:{for}\:{the}\:{linear}\:{system}: \\ $$$${x}−\mathrm{2}{y}+\mathrm{3}{z}=\mathrm{5} \\ $$$$\mathrm{2}{x}+{y}−\mathrm{4}{z}=\mathrm{0} \\ $$$$\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{11}{z}=−\mathrm{5} \\ $$$$\mathrm{2}.\:{Ghana}\:{railways}\:{co}−{operation}\:{has}\:\mathrm{20}\: \\ $$$${trains}\:{for}\:{it}'{s}\:{operations}.\:{It}\:{is}\:{observed}\:{that} \\ $$$${x}\:{trains}\:{can}\:{accommodate}\:\mathrm{2}\:{passengers}, \\ $$$${y}\:{trains}\:\mathrm{3}\:{passengers}\:{and}\:{z}\:{trains}\:\mathrm{5}\: \\ $$$${passengers}.\:{Howeer},\:{the}\:{totsl}\:{number}\:{of} \\ $$$${passrngers}\:{always}\:{present}\:{at}\:{Ghana}\: \\ $$$${railways}\:{are}\:\mathrm{64}.\:{During}\:{market}\:{day},\:\mathrm{3}\:{of} \\ $$$${x}\:{trains},\:\mathrm{2}\:{of}\:{y}\:{trains}\:{and}\:\mathrm{4}\:{of}\:{z}\:{trains}\:{for}\: \\ $$$${a}\:{total}\:{of}\:\mathrm{10}\:{trains}\:{were}\:{used}.\:{Determine}\: \\ $$$${the}\:{values}\:{of}\:{x},\:{y}\:{and}\:{z}. \\ $$
Answered by Mastermind last updated on 01/Feb/23
Ques. 1  x=2,  y=0 and z=1    solution  Using Row reduction Method  x−2y+3z=5         5y−10z=−10         10y−20z=−20    x−2y+3z=5        ....(1)         5y−10z=−10 ...(2)    therefore, from (2), we have   y=2z−2  putting y in (1), we get  x=z+1    Now, z is a free variable  taking z as 1  we have x=2, y=0 and z=1      Mastermind
$$\mathrm{Ques}.\:\mathrm{1} \\ $$$$\mathrm{x}=\mathrm{2},\:\:\mathrm{y}=\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{1} \\ $$$$ \\ $$$$\mathrm{solution} \\ $$$$\mathrm{Using}\:\mathrm{Row}\:\mathrm{reduction}\:\mathrm{Method} \\ $$$$\mathrm{x}−\mathrm{2y}+\mathrm{3z}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\mathrm{5y}−\mathrm{10z}=−\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\mathrm{10y}−\mathrm{20z}=−\mathrm{20} \\ $$$$ \\ $$$$\mathrm{x}−\mathrm{2y}+\mathrm{3z}=\mathrm{5}\:\:\:\:\:\:\:\:….\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{5y}−\mathrm{10z}=−\mathrm{10}\:…\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{therefore},\:\mathrm{from}\:\left(\mathrm{2}\right),\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\mathrm{y}=\mathrm{2z}−\mathrm{2} \\ $$$$\mathrm{putting}\:\mathrm{y}\:\mathrm{in}\:\left(\mathrm{1}\right),\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{x}=\mathrm{z}+\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Now},\:\mathrm{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{free}\:\mathrm{variable} \\ $$$$\mathrm{taking}\:\mathrm{z}\:\mathrm{as}\:\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{x}=\mathrm{2},\:\mathrm{y}=\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Commented by akuba last updated on 01/Feb/23
please explain the row reduction method
$${please}\:{explain}\:{the}\:{row}\:{reduction}\:{method} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *