Menu Close

1-specify-value-absolute-x-if-b-2x-3-x-3-0-




Question Number 109754 by joki last updated on 25/Aug/20
1.specify value absolute x if ?    b.∣2x+3∣+x−3=0
$$\mathrm{1}.{specify}\:{value}\:{absolute}\:{x}\:{if}\:? \\ $$$$ \\ $$$${b}.\mid\mathrm{2}{x}+\mathrm{3}\mid+{x}−\mathrm{3}=\mathrm{0} \\ $$$$ \\ $$
Answered by Her_Majesty last updated on 25/Aug/20
∣((3x+1)/(x−2))∣=1  (1) x<−1/3  ((3x+1)/(x−2))=1 ⇔ x=−3/2  (2) −1/3≤x<2  −((3x+1)/(x−2))=1 ⇔ x=1/4  (3) 2<x  no solution  ⇒ x=−3/2∨x=1/4    ∣2x+3∣+x−3=0  (1) x<−3/2  −(2x+3)+x−3=0 ⇔ x=−6  (2) x≥−3/2  2x+3+x−3=0 ⇔ x=0  ⇒ x=−6∨x=0
$$\mid\frac{\mathrm{3}{x}+\mathrm{1}}{{x}−\mathrm{2}}\mid=\mathrm{1} \\ $$$$\left(\mathrm{1}\right)\:{x}<−\mathrm{1}/\mathrm{3} \\ $$$$\frac{\mathrm{3}{x}+\mathrm{1}}{{x}−\mathrm{2}}=\mathrm{1}\:\Leftrightarrow\:{x}=−\mathrm{3}/\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\:−\mathrm{1}/\mathrm{3}\leqslant{x}<\mathrm{2} \\ $$$$−\frac{\mathrm{3}{x}+\mathrm{1}}{{x}−\mathrm{2}}=\mathrm{1}\:\Leftrightarrow\:{x}=\mathrm{1}/\mathrm{4} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{2}<{x} \\ $$$${no}\:{solution} \\ $$$$\Rightarrow\:{x}=−\mathrm{3}/\mathrm{2}\vee{x}=\mathrm{1}/\mathrm{4} \\ $$$$ \\ $$$$\mid\mathrm{2}{x}+\mathrm{3}\mid+{x}−\mathrm{3}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:{x}<−\mathrm{3}/\mathrm{2} \\ $$$$−\left(\mathrm{2}{x}+\mathrm{3}\right)+{x}−\mathrm{3}=\mathrm{0}\:\Leftrightarrow\:{x}=−\mathrm{6} \\ $$$$\left(\mathrm{2}\right)\:{x}\geqslant−\mathrm{3}/\mathrm{2} \\ $$$$\mathrm{2}{x}+\mathrm{3}+{x}−\mathrm{3}=\mathrm{0}\:\Leftrightarrow\:{x}=\mathrm{0} \\ $$$$\Rightarrow\:{x}=−\mathrm{6}\vee{x}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *