Menu Close

1-tan-1-x-2-dx-2-tan-1-x-dx-




Question Number 117342 by bemath last updated on 11/Oct/20
 (1)∫ (tan^(−1) (x))^2  dx = ?  (2) ∫ tan^(−1) ((√x)) dx =?
(1)(tan1(x))2dx=?(2)tan1(x)dx=?
Answered by mathmax by abdo last updated on 11/Oct/20
I =∫ arctan^2 x dx  by psrts I =x arctan^2 x−∫ x(((2arctanx))/(1+x^2 ))dx  =x arctan^2 x−∫  ((2x)/(1+x^2 )) arctan(x)dx  also by parts  ∫  ((2x)/(1+x^2 )) arctan(x)dx =ln(1+x^2 )arctan(x)−∫ ((ln(1+x^2 ))/(1+x^2 ))dx  ∫ ((ln(1+x^2 ))/(1+x^2 ))dx =_(x=tanθ)   ∫  ((ln(1+tan^2 θ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫ ln((1/(cos^2 θ)))dθ =−2 ∫ ln(cosθ)dθ ⇒  I =x arctan^2 x−ln(1+x^2 )arctanx  −2 ∫ ln(cosθ)dθ...
I=arctan2xdxbypsrtsI=xarctan2xx(2arctanx)1+x2dx=xarctan2x2x1+x2arctan(x)dxalsobyparts2x1+x2arctan(x)dx=ln(1+x2)arctan(x)ln(1+x2)1+x2dxln(1+x2)1+x2dx=x=tanθln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=ln(1cos2θ)dθ=2ln(cosθ)dθI=xarctan2xln(1+x2)arctanx2ln(cosθ)dθ
Commented by mathmax by abdo last updated on 11/Oct/20
thank you but what mean ∣...∣  because  at C  ∣re^(iθ) ∣ =r  and ∣x+iy∣ =(√(x^2 +y^2 ))...!
thankyoubutwhatmeanbecauseatCreiθ=randx+iy=x2+y2!
Commented by bemath last updated on 11/Oct/20
the last term   ∫ ln (cos θ) dθ =?
thelasttermln(cosθ)dθ=?
Commented by Lordose last updated on 11/Oct/20
check the pic i uploaded.  it can also be expressed using clausen  function of second order (Cl_2 )
checkthepiciuploaded.itcanalsobeexpressedusingclausenfunctionofsecondorder(Cl2)
Answered by bemath last updated on 11/Oct/20

Leave a Reply

Your email address will not be published. Required fields are marked *