Menu Close

1-x-1-x-1-x-dx-




Question Number 62907 by aliesam last updated on 26/Jun/19
∫(√(((1+x)/(1−x)) ))(1+x) dx
$$\int\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:}\left(\mathrm{1}+{x}\right)\:{dx} \\ $$
Commented by mathmax by abdo last updated on 26/Jun/19
let A =∫(√((1+x)/(1−x)))(1+x)dx changement x =cos(2θ) give 2θ =arcosx ⇒  A =∫ (√((2cos^2 (θ))/(2sin^2 θ)))(1+cos(2θ)(−2sin(2θ)dθ  =−2∫ ((cosθ)/(sinθ))(1+cos(2θ) 2sinθ cosθ dθ =−4 ∫  cos^2 θ{1+cos(2θ}dθ  =−4 ∫ (((1+cos(2θ)^2 ))/2)dθ =−2 ∫  (1+2cos(2θ) +cos^2 (2θ))dθ  =−2θ −(4/2) sin(2θ) −2 ∫((1+cos(4θ))/2)dθ  =−2θ −2 sin(2θ) −θ −(1/4)sin(4θ) +c  =−3θ −2sin(2θ)−(1/2)sin(2θ)cos(2θ)+c  =−(3/2) arcosx−2(√(1−x^2 ))  −(x/2)(√(1−x^2 ))  +c .
$${let}\:{A}\:=\int\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\left(\mathrm{1}+{x}\right){dx}\:{changement}\:{x}\:={cos}\left(\mathrm{2}\theta\right)\:{give}\:\mathrm{2}\theta\:={arcosx}\:\Rightarrow \\ $$$${A}\:=\int\:\sqrt{\frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)}{\mathrm{2}{sin}^{\mathrm{2}} \theta}}\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)\left(−\mathrm{2}{sin}\left(\mathrm{2}\theta\right){d}\theta\right.\right. \\ $$$$=−\mathrm{2}\int\:\frac{{cos}\theta}{{sin}\theta}\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)\:\mathrm{2}{sin}\theta\:{cos}\theta\:{d}\theta\:=−\mathrm{4}\:\int\:\:{cos}^{\mathrm{2}} \theta\left\{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right\}{d}\theta\right.\right. \\ $$$$=−\mathrm{4}\:\int\:\frac{\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)^{\mathrm{2}} \right)}{\mathrm{2}}{d}\theta\:=−\mathrm{2}\:\int\:\:\left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}\theta\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)\right){d}\theta \\ $$$$=−\mathrm{2}\theta\:−\frac{\mathrm{4}}{\mathrm{2}}\:{sin}\left(\mathrm{2}\theta\right)\:−\mathrm{2}\:\int\frac{\mathrm{1}+{cos}\left(\mathrm{4}\theta\right)}{\mathrm{2}}{d}\theta \\ $$$$=−\mathrm{2}\theta\:−\mathrm{2}\:{sin}\left(\mathrm{2}\theta\right)\:−\theta\:−\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{4}\theta\right)\:+{c} \\ $$$$=−\mathrm{3}\theta\:−\mathrm{2}{sin}\left(\mathrm{2}\theta\right)−\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right){cos}\left(\mathrm{2}\theta\right)+{c} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\:{arcosx}−\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\:−\frac{{x}}{\mathrm{2}}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\:+{c}\:. \\ $$
Answered by Hope last updated on 26/Jun/19
∫(((1+x)^2 )/( (√(1−x^2 ))))dx  ∫(dx/( (√(1−x^2 ))))+∫((2xdx)/( (√(1−x^2 ))))+∫(x^2 /( (√(1−x^2 ))))dx  x=sina  dx=cosada  ∫((cosada)/(cosa))+∫((2sina×cosada)/(cosa))+∫((sin^2 a×cosada)/(cosa))  ∫da+2∫sinada+∫((1−cos2a)/2)da  ∫da+2∫sinada+(1/2)∫da−(1/2)∫cos2ada  a−2cosa+(1/2)a−(1/2)×((sin2a)/2)+c  =(3/2)sin^(−1) (x)−2(√(1−x^2 )) −(1/4)×2x×(√(1−x^2 )) +c
$$\int\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}+\int\frac{\mathrm{2}{xdx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}+\int\frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$${x}={sina}\:\:{dx}={cosada} \\ $$$$\int\frac{{cosada}}{{cosa}}+\int\frac{\mathrm{2}{sina}×{cosada}}{{cosa}}+\int\frac{{sin}^{\mathrm{2}} {a}×{cosada}}{{cosa}} \\ $$$$\int{da}+\mathrm{2}\int{sinada}+\int\frac{\mathrm{1}−{cos}\mathrm{2}{a}}{\mathrm{2}}{da} \\ $$$$\int{da}+\mathrm{2}\int{sinada}+\frac{\mathrm{1}}{\mathrm{2}}\int{da}−\frac{\mathrm{1}}{\mathrm{2}}\int{cos}\mathrm{2}{ada} \\ $$$${a}−\mathrm{2}{cosa}+\frac{\mathrm{1}}{\mathrm{2}}{a}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{{sin}\mathrm{2}{a}}{\mathrm{2}}+{c} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left({x}\right)−\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{2}{x}×\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:+{c} \\ $$
Commented by mathmax by abdo last updated on 26/Jun/19
the answer of sir hope is correct.
$${the}\:{answer}\:{of}\:{sir}\:{hope}\:{is}\:{correct}. \\ $$
Commented by aliesam last updated on 26/Jun/19
(√(1+x))(1+x)≠(1+x)^2
$$\sqrt{\mathrm{1}+{x}}\left(\mathrm{1}+{x}\right)\neq\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \\ $$
Commented by peter frank last updated on 26/Jun/19
(√(((1+x)/(1−x))×((1+x)/(1+x)))) (1+x)  ((1+x)/( (√(1−x^2 )))).(1+x)  (((1+x)^2 )/( (√(1−x^2 ))))
$$\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}×\frac{\mathrm{1}+{x}}{\mathrm{1}+{x}}}\:\left(\mathrm{1}+{x}\right) \\ $$$$\frac{\mathrm{1}+{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}.\left(\mathrm{1}+{x}\right) \\ $$$$\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$
Commented by aliesam last updated on 27/Jun/19
oh thats right so sorry sir
$${oh}\:{thats}\:{right}\:{so}\:{sorry}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *