Menu Close

1-x-1-x-dx-x-1-1-




Question Number 119920 by bramlexs22 last updated on 28/Oct/20
 ∫ (√((1−x)/(1+x))) dx = ? , xε(−1,1)
1x1+xdx=?,xϵ(1,1)
Answered by mathmax by abdo last updated on 28/Oct/20
I =∫(√((1−x)/(1+x)))dx  we do the changement x =cost ⇒  I =∫ (√((2sin^2 ((t/2)))/(2cos^2 ((t/(2 ))))))sint dt  =∫  ((sin((t/2)))/(cos((t/2))))×2sin((t/2))cos((t/2))dt  =2 ∫ sin^2 ((t/2))dt =2∫  ((1−cos(t))/2)dt =∫(1−cost)dt  =t−sint +c =arcosx −(√(1−x^2 )) +c  =arcsinx −(√(1−x^2 )) +C
I=1x1+xdxwedothechangementx=costI=2sin2(t2)2cos2(t2)sintdt=sin(t2)cos(t2)×2sin(t2)cos(t2)dt=2sin2(t2)dt=21cos(t)2dt=(1cost)dt=tsint+c=arcosx1x2+c=arcsinx1x2+C
Answered by 1549442205PVT last updated on 28/Oct/20
 ∫ (√((1−x)/(1+x))) dx = ? , xε(−1,1)  Put x=cos ϕ⇒dx=−sinϕdϕ  F=−∫(√(((1−cosϕ)/(1+cosϕ)) )).sinϕdϕ  =−∫(√((2sin^2 (ϕ/2))/(2cos^2 (ϕ/2)))).sinϕdϕ  =−∫tan(ϕ/2).2sin(ϕ/2)cos(ϕ/2)dϕ  =−2∫sin^2 (ϕ/2)dϕ=−∫(1−cosϕ)dϕ  =−ϕ+sinϕ=−cos^(−1) (x)+(√(1−x^2 ))+C
1x1+xdx=?,xϵ(1,1)Putx=cosφdx=sinφdφF=1cosφ1+cosφ.sinφdφ=2sin2φ22cos2φ2.sinφdφ=tanφ2.2sinφ2cosφ2dφ=2sin2φ2dφ=(1cosφ)dφ=φ+sinφ=cos1(x)+1x2+C
Answered by bobhans last updated on 28/Oct/20
 ∫ (√((1−x)/(1+x))) dx =? ,x∈(−1,1)  K=∫(√((1−x)/(1+x))) dx [ let (√(1+x)) =1+ t ]  1+x = 1+2t+t^2  ⇒dx = (2+2t) dt  K=∫ ((√(1−2t−t^2 ))/(1+t))(2+2t)dt =  2∫ (√(2−(1+t)^2 )) dt=2∫ (√(((√2))^2 −(1+t)^2 )) dt  by substituting 1+t=(√2) sin w   K=4∫cos^2 w dw = 4∫((1/2)+(1/2)cos 2w)dw  K=2w+sin 2w + c  K=2arc sin (((1+t)/( (√2))))+2(((1+t)/( (√2))))(((√(1−2t−t^2 ))/( (√2))))+c  K=2arc sin ((√((1+x)/2)))+(√(1−x^2 )) + c
1x1+xdx=?,x(1,1)K=1x1+xdx[let1+x=1+t]1+x=1+2t+t2dx=(2+2t)dtK=12tt21+t(2+2t)dt=22(1+t)2dt=2(2)2(1+t)2dtbysubstituting1+t=2sinwK=4cos2wdw=4(12+12cos2w)dwK=2w+sin2w+cK=2arcsin(1+t2)+2(1+t2)(12tt22)+cK=2arcsin(1+x2)+1x2+c
Answered by Ar Brandon last updated on 28/Oct/20
I=∫(√((1−x)/(1+x)))dx=∫((1−x)/( (√(1−x^2 ))))dx     =∫(dx/( (√(1−x^2 ))))−∫(x/( (√(1−x^2 ))))dx     =Arcsin(x)+(√(1−x^2 ))+C
I=1x1+xdx=1x1x2dx=dx1x2x1x2dx=Arcsin(x)+1x2+C
Answered by Dwaipayan Shikari last updated on 28/Oct/20
∫((1−x)/( (√(1−x^2 ))))dx  =∫(1/( (√(1−x^2 ))))+(1/2)∫((−2x)/( (√(1−x^2 ))))dx  =sin^(−1) x+(√(1−x^2 ))+C
1x1x2dx=11x2+122x1x2dx=sin1x+1x2+C

Leave a Reply

Your email address will not be published. Required fields are marked *