Menu Close

1-x-1-y-3-4-x-2-y-y-2-x-9-find-the-value-of-x-and-y-




Question Number 58195 by salaw2000 last updated on 19/Apr/19
(1/x)+(1/y)=(3/4)  (x^2 /y)+(y^2 /x)=9  find the value of x and y
1x+1y=34x2y+y2x=9findthevalueofxandy
Answered by Kunal12588 last updated on 19/Apr/19
(1/x)+(1/y)=(3/4)  ⇒((x+y)/(xy))=(3/4)         (1)  ⇒x+y=((3xy)/4)      (2)  (x^2 /y)+(y^2 /x)=9  ⇒((x+y)/(xy))(x^2 −xy+y^2 )=9  from (1)  ⇒x^2 −xy+y^2 =12  ⇒(x+y)^2 −3xy=12        (3)  ⇒(x−y)^2 +xy=12           (4)  from (3)  x+y=±(√(3xy+12))               but from (2)  ((3xy)/4)=(√(3xy+12))  ⇒3∙3x^2 y^2 =16[3(xy+4)]  ⇒3x^2 y^2 −16xy−64=0  ⇒xy=((16±(√(16^2 −4∙3∙(−64))))/(2∙3))  ⇒xy=((48)/6),((−16)/6)  ⇒xy=8,((−8)/3)  (i) xy=8  putting xy in (2)  x+y=6    (5)  putting xy in (4)  (x−y)^2 =12−8  ⇒x−y=±(√4)  ⇒x−y=2 or x−y=−2  (a)  taking x−y=2  and comparing with (5)  1^(st)  answer   x=4,y=2  (b)  taking x−y=−2  and comparing with (5)  2^(nd)  answer x=2,y=4  (ii) xy=((−8)/3)  putting xy in (2)  x+y=−2     (6)  putting xy in (4)  (x−y)^2 +xy=12  3(x−y)^2 −8=36  x−y=±(√((44)/3))  (a)  taking x−y=(√((44)/3))  and comparing with (6)  3^(rd)  answer x=−1+(√((11)/3)),y=−1−(√((11)/3))  (b)  taking x−y=−(√((44)/3))  and comparing with (6)  4^(th)  answer x=−1−(√((11)/3)),y=−1+(√((11)/3))
1x+1y=34x+yxy=34(1)x+y=3xy4(2)x2y+y2x=9x+yxy(x2xy+y2)=9from(1)x2xy+y2=12(x+y)23xy=12(3)(xy)2+xy=12(4)from(3)x+y=±3xy+12butfrom(2)3xy4=3xy+1233x2y2=16[3(xy+4)]3x2y216xy64=0xy=16±16243(64)23xy=486,166xy=8,83(i)xy=8puttingxyin(2)x+y=6(5)puttingxyin(4)(xy)2=128xy=±4xy=2orxy=2(a)takingxy=2andcomparingwith(5)1stanswerx=4,y=2(b)takingxy=2andcomparingwith(5)2ndanswerx=2,y=4(ii)xy=83puttingxyin(2)x+y=2(6)puttingxyin(4)(xy)2+xy=123(xy)28=36xy=±443(a)takingxy=443andcomparingwith(6)3rdanswerx=1+113,y=1113(b)takingxy=443andcomparingwith(6)4thanswerx=1113,y=1+113
Commented by salaw2000 last updated on 19/Apr/19
thank you very much
thankyouverymuch
Answered by MJS last updated on 19/Apr/19
(1) y=((4x)/(3x−4))  (2) x^3 +y^3 −9xy=0  (1) in (2) ⇒  x^4 −4x^3 −((20)/3)x^2 +32x−((64)/3)=0  trying factors of ±((64)/3) we find  x_1 =2; x_2 =4  ⇒  (x−2)(x−4)(x^2 +2x−(8/3))=0  ⇒ x_3 =−1−((√(33))/3); x_4 =−1+((√(33))/3)  ⇒  ((x),(y) )∈{ ((2),(4) ),  ((4),(2) ),  (((−1−((√(33))/3))),((−1+((√(33))/3))) ) ,  (((−1−((√(33))/3))),((−1+((√(33))/3))) ) }
(1)y=4x3x4(2)x3+y39xy=0(1)in(2)x44x3203x2+32x643=0tryingfactorsof±643wefindx1=2;x2=4(x2)(x4)(x2+2x83)=0x3=1333;x4=1+333(xy){(24),(42),(13331+333),(13331+333)}
Commented by Kunal12588 last updated on 19/Apr/19
Sir you are making me think why I did that ����
Commented by MJS last updated on 19/Apr/19
different paths lead to the same solutions −  that′s a good thing!
differentpathsleadtothesamesolutionsthatsagoodthing!
Commented by salaw2000 last updated on 19/Apr/19
a very big thanks to you
averybigthankstoyou

Leave a Reply

Your email address will not be published. Required fields are marked *