Menu Close

1-x-1-y-34-1-x-1-y-23-1-xy-find-the-solution-




Question Number 80702 by john santu last updated on 05/Feb/20
 { (((1/x)+(1/y)=34)),(((1/( (√x)))+(1/( (√y)))=23−(1/( (√(xy)))) )) :}  find the solution.
{1x+1y=341x+1y=231xyfindthesolution.
Commented by mind is power last updated on 05/Feb/20
let (1/( (√x)))+(1/( (√y)))=u  (1/( (√(xy)))).  ⇒u^2 −2v=34  u=23−v  ⇒(23−v)^2 −2v=34  v^2 −48v+495=0  v∈{15,28}  u≥0⇒v=15 ⇒u=8   { (((1/( (√x)))+(1/( (√y)))=8)),(((1/( (√x))).(1/( (√y)))=15)) :}  (1/( (√x))),(1/( (√y)))  root of  X^2 −8X+15  X∈{3,5}  ⇒(x,y)∈{((1/9),(1/(25)));((1/(25)),(1/9))}
let1x+1y=u1xy.u22v=34u=23v(23v)22v=34v248v+495=0v{15,28}u0v=15u=8{1x+1y=81x.1y=151x,1yrootofX28X+15X{3,5}(x,y){(19,125);(125,19)}
Commented by john santu last updated on 05/Feb/20
let (1/( (√x)))+(1/( (√y)))=u, (1/( (√(xy))))=v  u^2 −2v=34 , u+v=23  u^2 +2u−80=0 ⇒ { ((u=8 )),((u=−10)) :}  for u = 8 , v=15  (1/( (√x)))+(1/( (√y)))=8 ∧(1/( (√(xy))))=15   (1/( (√x)))=3 , (1/( (√x))) =5 ⇒ x = (1/9) , x=(1/(25))  ∴ ((1/9),(1/(25))) , ((1/(25)), (1/9))
let1x+1y=u,1xy=vu22v=34,u+v=23u2+2u80=0{u=8u=10foru=8,v=151x+1y=81xy=151x=3,1x=5x=19,x=125(19,125),(125,19)
Commented by john santu last updated on 05/Feb/20
great sir
greatsir
Commented by MJS last updated on 06/Feb/20
(1/( (√x)))=u−v; (1/( (√y)))=u+v; u−v>0∧u+v>0   { ((v^2 =17−u^2 )),((u^2 +u−20=0)) :}   { ((v_1 =±2(√2)i; v_2 =±1)),((u_1 =−5; u_2 =4)) :}  [u_1 , v_1  not useable]  (1/( (√x)))=5∧(1/( (√y)))=3 ∨ (1/( (√x)))=3∧(1/( (√y)))=5  x=(1/(25))∧y=(1/9) ∨ x=(1/9)∧y=(1/(25))
1x=uv;1y=u+v;uv>0u+v>0{v2=17u2u2+u20=0{v1=±22i;v2=±1u1=5;u2=4[u1,v1notuseable]1x=51y=31x=31y=5x=125y=19x=19y=125
Answered by behi83417@gmail.com last updated on 05/Feb/20
(1/x)=t^2 ,(1/y)=s^2   ⇒ { ((t^2 +s^2 =34)),((t+s=23−ts)) :}⇒_(ts=q) ^(t+s=p)    { (((t+s)^2 −2ts=34)),((t+s+ts=23)) :}  ⇒ { ((p^2 −2q=34)),((p+q=23)) :}⇒p^2 −2(23−p)−34=0  ⇒p^2 +2p+1=34+46+1⇒(p+1)^2 =81  ⇒p+1=±9⇒ { ((p=8⇒q=15)),((p=−10⇒q=33)) :}  ⇒ { (([p=8,q=15]⇒[(1/( (√x)))=3,5,(1/( (√y)))=5,3])),((⇒(x,y)=((1/9),(1/(25))),((1/(25)),(1/9)))) :}  ⇒ { (([p=−10,q=33]⇒z^2 +10z+33=0)),((z=−5±(√(25−4×33))=−5±(√(107))i)) :}  ⇒(1/( (√x)))=−5±(√(107))i⇒ { ((x=(1/((−5−(√(107))i)^2 )))),((y=(1/((−5+(√(107))i)^2 )))) :}
1x=t2,1y=s2{t2+s2=34t+s=23tst+s=pts=q{(t+s)22ts=34t+s+ts=23{p22q=34p+q=23p22(23p)34=0p2+2p+1=34+46+1(p+1)2=81p+1=±9{p=8q=15p=10q=33{[p=8,q=15][1x=3,5,1y=5,3](x,y)=(19,125),(125,19){[p=10,q=33]z2+10z+33=0z=5±254×33=5±107i1x=5±107i{x=1(5107i)2y=1(5+107i)2

Leave a Reply

Your email address will not be published. Required fields are marked *