Question Number 80702 by john santu last updated on 05/Feb/20

Commented by mind is power last updated on 05/Feb/20

Commented by john santu last updated on 05/Feb/20

Commented by john santu last updated on 05/Feb/20

Commented by MJS last updated on 06/Feb/20
![(1/( (√x)))=u−v; (1/( (√y)))=u+v; u−v>0∧u+v>0 { ((v^2 =17−u^2 )),((u^2 +u−20=0)) :} { ((v_1 =±2(√2)i; v_2 =±1)),((u_1 =−5; u_2 =4)) :} [u_1 , v_1 not useable] (1/( (√x)))=5∧(1/( (√y)))=3 ∨ (1/( (√x)))=3∧(1/( (√y)))=5 x=(1/(25))∧y=(1/9) ∨ x=(1/9)∧y=(1/(25))](https://www.tinkutara.com/question/Q80755.png)
Answered by behi83417@gmail.com last updated on 05/Feb/20
![(1/x)=t^2 ,(1/y)=s^2 ⇒ { ((t^2 +s^2 =34)),((t+s=23−ts)) :}⇒_(ts=q) ^(t+s=p) { (((t+s)^2 −2ts=34)),((t+s+ts=23)) :} ⇒ { ((p^2 −2q=34)),((p+q=23)) :}⇒p^2 −2(23−p)−34=0 ⇒p^2 +2p+1=34+46+1⇒(p+1)^2 =81 ⇒p+1=±9⇒ { ((p=8⇒q=15)),((p=−10⇒q=33)) :} ⇒ { (([p=8,q=15]⇒[(1/( (√x)))=3,5,(1/( (√y)))=5,3])),((⇒(x,y)=((1/9),(1/(25))),((1/(25)),(1/9)))) :} ⇒ { (([p=−10,q=33]⇒z^2 +10z+33=0)),((z=−5±(√(25−4×33))=−5±(√(107))i)) :} ⇒(1/( (√x)))=−5±(√(107))i⇒ { ((x=(1/((−5−(√(107))i)^2 )))),((y=(1/((−5+(√(107))i)^2 )))) :}](https://www.tinkutara.com/question/Q80724.png)