Menu Close

1-x-2-1-dx-




Question Number 25229 by NECx last updated on 06/Dec/17
∫(1/( (√(x^2 +1))))dx
$$\int\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx} \\ $$
Commented by prakash jain last updated on 06/Dec/17
x=sinh u  dx=cosh u∙du  1+sinh^2 u=cosh^2 u  ∫(1/( (√(x^2 +1))))dx=∫((cosh u)/(cosh u))du  =u  =sinh^(−1) x  =ln (1+(√(1+x^2 )))
$${x}=\mathrm{sinh}\:{u} \\ $$$${dx}=\mathrm{cosh}\:{u}\centerdot{du} \\ $$$$\mathrm{1}+\mathrm{sinh}^{\mathrm{2}} {u}=\mathrm{cosh}^{\mathrm{2}} {u} \\ $$$$\int\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx}=\int\frac{\mathrm{cosh}\:{u}}{\mathrm{cosh}\:{u}}{du} \\ $$$$={u} \\ $$$$=\mathrm{sinh}^{−\mathrm{1}} {x} \\ $$$$=\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *