Menu Close

1-x-2-2-x-4-8x-2-4-dx-2-Shortest-distance-between-the-parabolas-y-2-4x-and-y-2-2x-6-is-




Question Number 58478 by rahul 19 last updated on 23/Apr/19
{1}   ∫((x^2 −2)/(x^4 +8x^2 +4)) dx = ?  {2}  Shortest distance between the  parabolas y^2 =4x and y^2 =2x−6 is ?
{1}x22x4+8x2+4dx=?{2}Shortestdistancebetweentheparabolasy2=4xandy2=2x6is?
Commented by maxmathsup by imad last updated on 24/Apr/19
let A =∫  ((x^2 −2)/(x^4  +8x^2  +4)) dx   roots of  x^4  +8x^2  +4 =0 ⇒t^2  +8t +4 =0  with t=x^2   Δ^′ =4^2 −4 =12 ⇒t_1 =−4+2(√3) and t_2 =−4−2(√3) ⇒  ((x^2 −2)/(x^4  +8x^2  +4)) =((t−2)/((t−t_1 )(t−t_2 ))) =F(t) =(a/(t−t_1 )) +(b/(t−t_2 ))  a =lim_(t→t_1 )   (t−t_1 )F(t) =((t_1 −2)/(t_1 −t_2 )) =((−6+2(√3))/(4(√3))) =((−3+(√3))/(2(√3))) =((−(√3)+1)/2)  b =lim_(t→t_2 )    (t−t_2 )F(t) =((t_2 −2)/(t_2 −t_1 )) =((−6−2(√3))/(−4(√3))) =((3+(√3))/(2(√3))) =(((√3) +1)/2) ⇒  A =((1−(√3))/2)∫  (dx/(x^2 −t_1 )) +((1+(√3))/2) ∫  (dx/(x^2 −t_2 ))  but  ∫  (dx/(x^2 −t_1 )) =∫  (dx/(x^2 +4−2(√3))) dx  =∫   (dx/(x^2  +(1−(√3))^2 )) =_(x=(1−(√3))u)     ∫  (((1−(√3))du)/((1−(√3))^2 (1+u^2 )))  =(1/(1−(√3))) arctan(u) +c_1   =(1/(1−(√3))) arctan((x/((1−(√3))))) also  ∫  (dx/(x^2 −t_2 )) = ∫  (dx/(x^2 +4+2(√3))) = ∫ (dx/(x^2  +(1+(√3))^2 )) =(1/(1+(√3))) arctan((x/(1+(√3)))) +c_2  ⇒  A =(1/2) arctan((x/(1−(√3)))) +(1/2) arctan((x/(1+(√3)))) +C .
letA=x22x4+8x2+4dxrootsofx4+8x2+4=0t2+8t+4=0witht=x2Δ=424=12t1=4+23andt2=423x22x4+8x2+4=t2(tt1)(tt2)=F(t)=att1+btt2a=limtt1(tt1)F(t)=t12t1t2=6+2343=3+323=3+12b=limtt2(tt2)F(t)=t22t2t1=62343=3+323=3+12A=132dxx2t1+1+32dxx2t2butdxx2t1=dxx2+423dx=dxx2+(13)2=x=(13)u(13)du(13)2(1+u2)=113arctan(u)+c1=113arctan(x(13))alsodxx2t2=dxx2+4+23=dxx2+(1+3)2=11+3arctan(x1+3)+c2A=12arctan(x13)+12arctan(x1+3)+C.
Answered by Prithwish sen last updated on 23/Apr/19
∫((x^2 −2)/(x^4 +8x^2 +4))dx  =∫(((1−(2/x^2 )))/(x^2 +(4/x^2 )+8))dx  =∫((d(x+(2/x)))/((x+(2/x))^2 +4))  =(1/2)tan^(−1) ∣((x^2 +2)/(2x))∣+C
x22x4+8x2+4dx=(12x2)x2+4x2+8dx=d(x+2x)(x+2x)2+4=12tan1x2+22x+C
Commented by rahul 19 last updated on 24/Apr/19
thank u sir.
thankusir.
Answered by mr W last updated on 23/Apr/19
(2)  from point ((h^2 /4),h) to point (((k^2 +6)/2),k):  D=d^2 =((h^2 /4)−((k^2 +6)/2))^2 +(h−k)^2   (∂D/∂h)=2((h^2 /4)−((k^2 +6)/2))((2h)/4)+2(h−k)=0  ⇒((h^2 /4)−((k^2 +6)/2))(h/2)+(h−k)=0   ...(i)  (∂D/∂k)=−2((h^2 /4)−((k^2 +6)/2))((2k)/2)−2(h−k)=0  ⇒((h^2 /4)−((k^2 +6)/2))k+(h−k)=0   ...(ii)  from (i) and (ii):  ⇒k=(h/2)  ⇒(h^2 /8)=2  ⇒h=±4⇒point (4,±4)  ⇒k=±2⇒point (5,±2)  min. d=(√D_(min) )=(√((5−4)^2 +(2−4)^2 ))=(√5)
(2)frompoint(h24,h)topoint(k2+62,k):D=d2=(h24k2+62)2+(hk)2Dh=2(h24k2+62)2h4+2(hk)=0(h24k2+62)h2+(hk)=0(i)Dk=2(h24k2+62)2k22(hk)=0(h24k2+62)k+(hk)=0(ii)from(i)and(ii):k=h2h28=2h=±4point(4,±4)k=±2point(5,±2)min.d=Dmin=(54)2+(24)2=5
Commented by rahul 19 last updated on 24/Apr/19
thank U sir.
thankUsir.

Leave a Reply

Your email address will not be published. Required fields are marked *