Question Number 107036 by john santu last updated on 08/Aug/20
$$\int\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} }\:? \\ $$
Commented by kaivan.ahmadi last updated on 08/Aug/20
$${x}={tgu}\Rightarrow{dx}=\left(\mathrm{1}+{tg}^{\mathrm{2}} {u}\right){du}={sec}^{\mathrm{2}} {udu} \\ $$$$\mathrm{1}+{x}^{\mathrm{2}} ={sec}^{\mathrm{2}} {u} \\ $$$${x}^{\mathrm{4}} ={tg}^{\mathrm{4}} {u} \\ $$$$\Rightarrow\int\frac{{secu}}{{tg}^{\mathrm{4}} {u}}\left({sec}^{\mathrm{2}} {u}\right){du}=\int\frac{{sec}^{\mathrm{3}} {u}}{{tg}^{\mathrm{4}} {u}}{du}=\int\frac{{cosu}}{{sin}^{\mathrm{4}} {u}}{du} \\ $$$${now}\:{let}\:{v}={sinu}\Rightarrow{dv}={cosudu} \\ $$$$\Rightarrow\int\frac{{dv}}{{v}^{\mathrm{4}} }=\int{v}^{−\mathrm{4}} {dv}=\frac{{v}^{−\mathrm{3}} }{−\mathrm{3}}+{c}=\frac{−\mathrm{1}}{\mathrm{3}{v}^{\mathrm{3}} }+{c}= \\ $$$$\frac{−\mathrm{1}}{\mathrm{3}{sin}^{\mathrm{3}} {u}}+{c}=\frac{−\mathrm{1}}{\mathrm{3}{sin}\left({tg}^{−\mathrm{1}} {x}\right)}+{c} \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 08/Aug/20
$$\int\frac{\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}}{\mathrm{tan}^{\mathrm{4}} \theta}\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\int\frac{\mathrm{sec}^{\mathrm{3}} \theta}{\mathrm{tan}^{\mathrm{4}} \theta}\mathrm{d}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{x}=\mathrm{tan}\theta\:\:\:\mathrm{1}=\mathrm{sec}^{\mathrm{2}} \theta\frac{\mathrm{d}\theta}{\mathrm{dx}}\right. \\ $$$$\int\frac{\mathrm{cos}\theta}{\mathrm{sin}^{\mathrm{4}} \theta}\mathrm{d}\theta \\ $$$$−\frac{\mathrm{1}}{\mathrm{3sin}^{\mathrm{3}} \theta}+\mathrm{C}\:\:\:\:\:\:=−\frac{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3x}^{\mathrm{3}} }+\mathrm{C} \\ $$$$ \\ $$
Answered by bobhans last updated on 08/Aug/20