1-x-2-x-1-2-x-2-x-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 125194 by bemath last updated on 09/Dec/20 ∫(1−x2+x+1)2x2x2+x+1dx? Answered by liberty last updated on 09/Dec/20 bysecondEulersubstitutionwesetx2+x+1=xt+1;thenx2+x+1=x2t2+2xt+1;x=2t−11−t2dx=2t2−2t+2(1−t2)2dt;I=∫(1−x2+x+1)2x2x2+x+1dx=2∫t21−t2dtI=−2t+ln∣1+t1−t∣+cI=−2(x2+x+1−1)x+ln∣x+x2+x+1−1x−x2+x+1+1∣+c=−2(x2+x+1−1)x+ln∣2x+2x2+x+1+1∣+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-125195Next Next post: Question-125199 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.