Question Number 160903 by blackmamba last updated on 08/Dec/21
$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}\:'=\:\mathrm{2}{xy}\:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} \: \\ $$
Answered by GuruBelakangPadang last updated on 09/Dec/21
$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}\:'=\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)'{y}\:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} \: \\ $$$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{1}} {y}\:'=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)'{y} \\ $$$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{1}} {y}\:'−\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)'{y}=\mathrm{0} \\ $$$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{1}} {y}\:'+\left(\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{1}} \right)^{'} {y}=\mathrm{0} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{-\mathrm{1}} {y}=\frac{{y}}{\mathrm{1}+{x}^{\mathrm{2}} }={C} \\ $$
Answered by yeti123 last updated on 09/Dec/21
$$\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:=\:\mathrm{2}{xy}\:+\:\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}\:−\:\frac{\mathrm{2}{xy}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:=\:\mathrm{1}\:+\:{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{−\mathrm{1}} \frac{{dy}}{{dx}}\:−\:\frac{\mathrm{2}{xy}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{−\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{−\mathrm{1}} \\ $$$$\frac{{d}}{{dx}}\left\{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {y}\right\}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {y}\:=\:{x}\:+\:{c} \\ $$$${y}\:=\:\left({x}\:+\:{c}\right)\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right) \\ $$