Menu Close

1-x-3-1-dx-




Question Number 49032 by AdqhK ÐQeQqQ last updated on 01/Dec/18
∫(1/(x^3 +1))dx=??
1x3+1dx=??
Answered by arvinddayama01@gmail.com. last updated on 01/Dec/18
∫(1/((x+1)(x^2 −x+1)))dx       ∵a^3 +b^3 =(a+b)(a^2 −ab+b^2 )  (1/((x+1)(x^2 −x+1)))=(A/((x+1)))+((Bx+C)/((x^2 −x+1)))  1=Ax^2 −Ax+A+Bx^2 +Bx+Cx+C            A+B=0  −A+B+C=0             A+C=1  A=1/3    B=−1/3     c=2/3    =   (1/3)∫(1/(x+1))dx−(1/3)∫((x−2)/((x^2 −x+1)))dx  =(1/3)ln(x+1)−(1/6)∫((2x−1−3)/(x^2 −x+1))dx  =(1/3)ln(x+1)−(1/6)∫((2x−1)/(x^2 −x+1))dx+(3/6)∫(1/((x−(1/2))^2 +(((√3)/2))^2 ))dx  =(1/3)ln(x+1)−(1/6)ln(x^2 −x+1)+(1/2).(1/( (√3)/2))tan^(−1) (((x−(1/2))/((√3)/2)))  +C  =(1/3)ln(x+1)−(1/3)ln((√(x^2 −x+1)))+(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))  +C  =(1/3)ln(((x+1)/( (√(x^2 −x+1)))))+(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))  +C
1(x+1)(x2x+1)dxa3+b3=(a+b)(a2ab+b2)1(x+1)(x2x+1)=A(x+1)+Bx+C(x2x+1)1=Ax2Ax+A+Bx2+Bx+Cx+CA+B=0A+B+C=0A+C=1A=1/3B=1/3c=2/3=131x+1dx13x2(x2x+1)dx=13ln(x+1)162x13x2x+1dx=13ln(x+1)162x1x2x+1dx+361(x12)2+(32)2dx=13ln(x+1)16ln(x2x+1)+12.13/2tan1(x1232)+C=13ln(x+1)13ln(x2x+1)+13tan1(2x13)+C=13ln(x+1x2x+1)+13tan1(2x13)+C
Commented by AdqhK ÐQeQqQ last updated on 02/Dec/18
thanku very much sir
thankuverymuchsir
Answered by hknkrc46 last updated on 01/Dec/18
∫(1/(x^3 +1))dx=∫(1/((x+1)(x^2 −x+1)))dx  =∫((A/(x+1)) + ((Bx+C)/(x^2 −x+1)))dx   ∫(1/(x^3 +1))dx=∫((A/(x+1)) + ((Bx+C)/(x^2 −x+1)))dx ★  {(1/((x+1)(x^2 −x+1)))=(A/(x+1))_((x^2 −x+1))  + ((Bx+C)/(x^2 −x+1))_((x+1)) }  {(1/((x+1)(x^2 −x+1)))=((A(x^2 −x+1))/((x+1)(x^2 −x+1))) + (((Bx+C)(x+1))/((x+1)(x^2 −x+1)))}  {(1/((x+1)(x^2 −x+1)))=((A(x^2 −x+1)+(Bx+C)(x+1))/((x+1)(x^2 −x+1)))}  {1=A(x^2 −x+1)+(Bx+C)(x+1)}  {1=Ax^2 −Ax+A+Bx^2 +Bx+Cx+C}  {1=(A+B)x^2 +(B+C−A)x+C+A}  {A+B=0 , B+C−A=0 , C+A=1}  {A=(1/3) , B=−(1/3) , C=(2/3)}  ★ ∫(1/(x^3 +1))dx=∫((A/(x+1)) + ((Bx+C)/(x^2 −x+1)))dx  ∫(1/(x^3 +1))dx=∫(((1/3)/(x+1)) + ((−(1/3)x+(2/3))/(x^2 −x+1)))dx  =(1/3)∫((1/(x+1))−((x−2)/(x^2 −x+1)))dx  =(1/3)∫((1/(x+1))−(((1/2)(2x−1)−(3/2))/(x^2 −x+1)))dx  =(1/3)∫((1/(x+1))−(((1/2)(2x−1))/(x^2 −x+1))+((3/2)/(x^2 −x+1)))dx  =(1/3)∫((1/(x+1))−(1/2)∙((2x−1)/(x^2 −x+1))+(3/2)∙(1/((x−(1/2))^2 +(3/4))))dx  =(1/3)∫((1/(x+1))−(1/2)∙((2x−1)/(x^2 −x+1))+(3/2)∙(1/((x−(1/2))^2 +(((√3)/2))^2 )))dx  =(1/3)∫(dx/(x+1))−(1/6)∫((2x−1)/(x^2 −x+1))dx+(1/2)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  ∫(1/(x^3 +1))dx=I_1 +I_2 +I_3  ★★  {I_1 =(1/3)∫(dx/(x+1))}  {I_2 =−(1/6)∫((2x−1)/(x^2 −x+1))dx}  {I_3 =(1/2)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))}  I_1 =(1/3)∫(dx/(x+1))=(1/3)∫(((d/dx)(x+1))/(x+1))dx=(1/3)ln ∣x+1∣+c_1   I_2 =−(1/6)∫((2x−1)/(x^2 −x+1))dx=−(1/6)∫(((d/dx)(x^2 −x+1))/(x^2 −x+1))dx=−(1/6)ln ∣x^2 −x+1∣+c_2   I_3 =(1/2)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 )) →  { ((x−(1/2)=((√3)/2)tan α)),((dx=((√3)/2)sec^2 α dα)),((α=tan^(−1) (((2x−1)/( (√3)))))) :}  I_3 =(1/2)∫((((√3)/2)sec^2 α)/((((√3)/2))^2 sec^2 α))dα=(1/( (√3)))∫dα=(1/( (√3)))α+c_3   I_3 =(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))+c_3   ★★ ∫(1/(x^3 +1))dx=I_1 +I_2 +I_3   ∫(1/(x^3 +1))dx=(1/3)ln ∣x+1∣+c_1 −(1/6)ln ∣x^2 −x+1∣+c_2 +(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))+c_3   ∫(1/(x^3 +1))dx=(1/3)ln ∣x+1∣−(1/6)ln ∣x^2 −x+1∣+(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))+c_1 +c_2 +c_3   ♣ c_1 +c_2 +c_3 =c  ⧫ a≠0 ∧ ∀x∈R ∧ △_((ax^2 +bx+c)) =b^2 −4ac<0 ⇒ { ((ax^2 +bx+c>0 ∧ ∣ax^2 +bx+c∣=ax^2 +bx+c , a>0)),((ax^2 +bx+c<0 ∧ ∣ax^2 +bx+c∣=−(ax^2 +bx+c) , a<0)) :}  ⧫ △_(x^2 −x+1) =(−1)^2 −4∙1∙1=−3<0 ⇒∣x^2 −x+1∣=x^2 −x+1 (a=1>0)  ∫(1/(x^3 +1))dx=(1/3)ln ∣x+1∣−(1/6)ln (x^2 −x+1)+(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))+c
1x3+1dx=1(x+1)(x2x+1)dx=(Ax+1+Bx+Cx2x+1)dx1x3+1dx=(Ax+1+Bx+Cx2x+1)dx{1(x+1)(x2x+1)=Ax+1(x2x+1)+Bx+Cx2x+1(x+1)}{1(x+1)(x2x+1)=A(x2x+1)(x+1)(x2x+1)+(Bx+C)(x+1)(x+1)(x2x+1)}{1(x+1)(x2x+1)=A(x2x+1)+(Bx+C)(x+1)(x+1)(x2x+1)}{1=A(x2x+1)+(Bx+C)(x+1)}{1=Ax2Ax+A+Bx2+Bx+Cx+C}{1=(A+B)x2+(B+CA)x+C+A}{A+B=0,B+CA=0,C+A=1}{A=13,B=13,C=23}1x3+1dx=(Ax+1+Bx+Cx2x+1)dx1x3+1dx=(13x+1+13x+23x2x+1)dx=13(1x+1x2x2x+1)dx=13(1x+112(2x1)32x2x+1)dx=13(1x+112(2x1)x2x+1+32x2x+1)dx=13(1x+1122x1x2x+1+321(x12)2+34)dx=13(1x+1122x1x2x+1+321(x12)2+(32)2)dx=13dxx+1162x1x2x+1dx+12dx(x12)2+(32)21x3+1dx=I1+I2+I3{I1=13dxx+1}{I2=162x1x2x+1dx}{I3=12dx(x12)2+(32)2}I1=13dxx+1=13ddx(x+1)x+1dx=13lnx+1+c1I2=162x1x2x+1dx=16ddx(x2x+1)x2x+1dx=16lnx2x+1+c2I3=12dx(x12)2+(32)2{x12=32tanαdx=32sec2αdαα=tan1(2x13)I3=1232sec2α(32)2sec2αdα=13dα=13α+c3I3=13tan1(2x13)+c31x3+1dx=I1+I2+I31x3+1dx=13lnx+1+c116lnx2x+1+c2+13tan1(2x13)+c31x3+1dx=13lnx+116lnx2x+1+13tan1(2x13)+c1+c2+c3c1+c2+c3=ca0xR(ax2+bx+c)=b24ac<0{ax2+bx+c>0ax2+bx+c∣=ax2+bx+c,a>0ax2+bx+c<0ax2+bx+c∣=(ax2+bx+c),a<0x2x+1=(1)2411=3<0⇒∣x2x+1∣=x2x+1(a=1>0)1x3+1dx=13lnx+116ln(x2x+1)+13tan1(2x13)+c

Leave a Reply

Your email address will not be published. Required fields are marked *