Menu Close

1-x-3-5x-f-t-dt-2x-then-f-18-




Question Number 124853 by bemath last updated on 06/Dec/20
  ∫_1 ^( x^3 +5x) f(t) dt = 2x     then f(18) =?
1x3+5xf(t)dt=2xthenf(18)=?
Answered by liberty last updated on 06/Dec/20
  (d/dx) [ ∫_( 1) ^( x^3 +5x) f(t) dt ] = (d/dx)(2x)   (3x^2 +5) f(x^3 +5x) = 2 ⇒ f(x^3 +5x) = (2/(3x^2 +5))   put x^3 +5x = 18 ; (x−2)(x^2 +2x+9)=0  ⇒x_1  = 2 ∧ f(18) = (2/(3×4+5)) = (2/(17))  ⇒x_(2,3)  = ((−2±4i(√2))/2) = −1±2i(√2)  we get f(18) = (2/(3(−7−4i(√2))+5))=(2/(−16−12i(√2))) =(1/(−8−6i(√2)))  and f(18) = (2/(3(−7+4i(√2))+5)) = (2/(−16+12i(√2))) = (1/(−8+6i(√2)))
ddx[1x3+5xf(t)dt]=ddx(2x)(3x2+5)f(x3+5x)=2f(x3+5x)=23x2+5putx3+5x=18;(x2)(x2+2x+9)=0x1=2f(18)=23×4+5=217x2,3=2±4i22=1±2i2wegetf(18)=23(74i2)+5=21612i2=186i2andf(18)=23(7+4i2)+5=216+12i2=18+6i2
Answered by mathmax by abdo last updated on 06/Dec/20
by derivation we get  (3x^2  +5)f(x^3  +5x)=2  x=2 ⇒(12+5)f(8+10)=2 ⇒17f(18)=2 ⇒f(18)=(2/(17))
byderivationweget(3x2+5)f(x3+5x)=2x=2(12+5)f(8+10)=217f(18)=2f(18)=217

Leave a Reply

Your email address will not be published. Required fields are marked *