1-x-4-1-x-4-3-2-dx-A-A-B-Find-B-Assume-integration-of-constant-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36801 by rahul 19 last updated on 05/Jun/18 ∫1+x4(1−x4)32dx=A∫A=BFindB?Assumeintegrationofconstant=0. Answered by MJS last updated on 05/Jun/18 A=x1−x4B=12arcsinx2A:∫1+x4(1−x4)32dxlookslikeit′sp(x)1−x4withp(x)isapolynomelet′stryddx(p(x)1−x4)=ddx(p(x)(1−x4)−12)==p′(x)(1−x4)−12+p(x)(2x3(1−x4)−32)==p′(x)(1−x4)+2p(x)x3(1−x4)32⇒p′(x)(1−x4)+2p(x)x3=1+x4let′stryp(x)=ax+b;p′(x)=aa+2bx3+ax4=1+x4a=1;b=0p(x)=x∫1+x4(1−x4)32dx=x1−x4B:∫x1−x4dx=[t=x2→dx=dt2x]=12∫dt1−t2=12arcsint==12arcsinx2 Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18 ∫1+x4(1−x4)1−x4dxx2=1tx=t−12dx=−12×1t32dt=−12∫dtt32×1+1t21−1t2×11−1t2=−12∫dtt32×t2+1t2−1×tt2−1=−12∫t2+1t2−1×1t×1t(t−1tdt=−12∫1+1t21−1t2×1t×dtt−1t−12∫1+1t2t−1t×dtt−1t=−12∫dkk32when(k=t−1t)=−12×k−12−12+c=1k+c=1t−1t+c=11x2−x2+csoA=11x2−x2∫Adx=B∫x1−x4dxy=x2dy=2xdx∫dy2×1−y2=12sin−1(y)=12sin−1(x2)isB Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-e-t-ln-1-e-2t-dt-Next Next post: Question-167872 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.