Menu Close

1-x-4-1-x-4-3-2-dx-A-A-B-Find-B-Assume-integration-of-constant-0-




Question Number 36801 by rahul 19 last updated on 05/Jun/18
∫ ((1+x^4 )/((1−x^4 )^(3/2) )) dx = A   ∫ A = B  Find B ?  Assume integration of constant=0.
1+x4(1x4)32dx=AA=BFindB?Assumeintegrationofconstant=0.
Answered by MJS last updated on 05/Jun/18
A=(x/( (√(1−x^4 ))))  B=(1/2)arcsin x^2     A:  ∫((1+x^4 )/((1−x^4 )^(3/2) ))dx  looks like it′s ((p(x))/( (√(1−x^4 )))) with p(x) is a polynome  let′s try  (d/dx)(((p(x))/( (√(1−x^4 )))))=(d/dx)(p(x)(1−x^4 )^(−(1/2)) )=  =p′(x)(1−x^4 )^(−(1/2)) +p(x)(2x^3 (1−x^4 )^(−(3/2)) )=  =((p′(x)(1−x^4 )+2p(x)x^3 )/((1−x^4 )^(3/2) ))  ⇒ p′(x)(1−x^4 )+2p(x)x^3 =1+x^4   let′s try p(x)=ax+b; p′(x)=a  a+2bx^3 +ax^4 =1+x^4   a=1; b=0  p(x)=x  ∫((1+x^4 )/((1−x^4 )^(3/2) ))dx=(x/( (√(1−x^4 ))))    B:  ∫(x/( (√(1−x^4 ))))dx=            [t=x^2  → dx=(dt/(2x))]  =(1/2)∫(dt/( (√(1−t^2 ))))=(1/2)arcsin t=  =(1/2)arcsin x^2
A=x1x4B=12arcsinx2A:1+x4(1x4)32dxlookslikeitsp(x)1x4withp(x)isapolynomeletstryddx(p(x)1x4)=ddx(p(x)(1x4)12)==p(x)(1x4)12+p(x)(2x3(1x4)32)==p(x)(1x4)+2p(x)x3(1x4)32p(x)(1x4)+2p(x)x3=1+x4letstryp(x)=ax+b;p(x)=aa+2bx3+ax4=1+x4a=1;b=0p(x)=x1+x4(1x4)32dx=x1x4B:x1x4dx=[t=x2dx=dt2x]=12dt1t2=12arcsint==12arcsinx2
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18
  ∫((1+x^4 )/((1−x^4 )(√(1−x^4 )) ))dx  x^2 =(1/t)  x=t^((−1)/2)   dx=((−1)/2)×(1/t^(3/2) )dt  =((−1)/2)∫(dt/t^(3/2) )×((1+(1/t^2 ))/(1−(1/t^2 )))×(1/( (√(1−(1/t^2 )))))  =((−1)/2)∫(dt/t^(3/2) )×((t^2 +1)/(t^2 −1))×(t/( (√(t^2 −1))))  =((−1)/2)∫((t^2 +1)/(t^2 −1))×(1/( (√t)))×(1/( (√t) ((√(t−(1/t)))))dt  =((−1)/2)∫((1+(1/t^2 ))/(1−(1/t^2 )))×(1/t)×(dt/( (√(t−(1/t)))))  ((−1)/2)∫((1+(1/t^2 ))/(t−(1/t)))×(dt/( (√(t−(1/t)))))  =((−1)/2)∫(dk/k^(3/2) )      when(k=t−(1/t))  =((−1)/2)×(k^((−1)/2) /((−1)/2))+c  =(1/( (√k)))+c  =(1/( (√(t−(1/t)))))+c  =(1/( (√((1/x^2 )−x^2 ))))+c    so A=(1/( (√((1/x^2 )−x^2 ))))  ∫Adx=B  ∫(x/( (√(1−x^4 ))))dx   y=x^2   dy=2xdx  ∫(dy/(2×(√(1−y^2 ))))  =(1/2)sin^(−1) (y)  =(1/2)sin^(−1) (x^2 )  is B
1+x4(1x4)1x4dxx2=1tx=t12dx=12×1t32dt=12dtt32×1+1t211t2×111t2=12dtt32×t2+1t21×tt21=12t2+1t21×1t×1t(t1tdt=121+1t211t2×1t×dtt1t121+1t2t1t×dtt1t=12dkk32when(k=t1t)=12×k1212+c=1k+c=1t1t+c=11x2x2+csoA=11x2x2Adx=Bx1x4dxy=x2dy=2xdxdy2×1y2=12sin1(y)=12sin1(x2)isB

Leave a Reply

Your email address will not be published. Required fields are marked *