Menu Close

1-x-7-x-x-10-1-dx-




Question Number 184031 by SEKRET last updated on 02/Jan/23
 ∫_1 ^∞  ((x^7 −x)/(x^(10) −1))dx = ?
$$\:\int_{\mathrm{1}} ^{\infty} \:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{7}} −\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}^{\mathrm{10}} −\mathrm{1}}\boldsymbol{\mathrm{dx}}\:=\:? \\ $$
Answered by ARUNG_Brandon_MBU last updated on 02/Jan/23
∫_1 ^∞ ((x^7 −x)/(x^(10) −1))dx=∫_0 ^1 (((1/x^7 )−(1/x))/((1/x^(10) )−1))∙(1/x^2 )dx=∫_0 ^1 ((x−x^7 )/(1−x^(10) ))dx  =(1/(10))∫_0 ^1 ((x^(−(4/5)) −x^(−(1/5)) )/(1−x))dx=(1/(10))(ψ((4/5))−ψ((1/5)))  =(π/(10))cot((π/5))=(π/(10))(√(1+(2/( (√5)))))
$$\int_{\mathrm{1}} ^{\infty} \frac{{x}^{\mathrm{7}} −{x}}{{x}^{\mathrm{10}} −\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\frac{\mathrm{1}}{{x}^{\mathrm{7}} }−\frac{\mathrm{1}}{{x}}}{\frac{\mathrm{1}}{{x}^{\mathrm{10}} }−\mathrm{1}}\centerdot\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{x}^{\mathrm{7}} }{\mathrm{1}−{x}^{\mathrm{10}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{−\frac{\mathrm{4}}{\mathrm{5}}} −{x}^{−\frac{\mathrm{1}}{\mathrm{5}}} }{\mathrm{1}−{x}}{dx}=\frac{\mathrm{1}}{\mathrm{10}}\left(\psi\left(\frac{\mathrm{4}}{\mathrm{5}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{5}}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{10}}\mathrm{cot}\left(\frac{\pi}{\mathrm{5}}\right)=\frac{\pi}{\mathrm{10}}\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}} \\ $$
Commented by SEKRET last updated on 02/Jan/23
beatiful solution.  thanks sir
$$\boldsymbol{\mathrm{beatiful}}\:\boldsymbol{\mathrm{solution}}.\:\:\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{sir}} \\ $$
Commented by ARUNG_Brandon_MBU last updated on 02/Jan/23
����
Commented by manxsol last updated on 02/Jan/23
what function is  ψ  ?
$${what}\:{function}\:{is}\:\:\psi\:\:? \\ $$
Commented by ARUNG_Brandon_MBU last updated on 02/Jan/23
digamma  Γ ′(x)=Γ(x)ψ(x)  ψ(α)=−γ+∫_0 ^1 ((1−t^(α−1) )/(1−t))dt  ψ(x)−ψ(1−x)=−πcot(πx)
$$\mathrm{digamma} \\ $$$$\Gamma\:'\left({x}\right)=\Gamma\left({x}\right)\psi\left({x}\right) \\ $$$$\psi\left(\alpha\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{t}^{\alpha−\mathrm{1}} }{\mathrm{1}−{t}}{dt} \\ $$$$\psi\left({x}\right)−\psi\left(\mathrm{1}−{x}\right)=−\pi\mathrm{cot}\left(\pi{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *