Menu Close

1-x-d-2-y-dx-2-x-dy-dx-xy-1-1-x-x-1-has-power-series-solution-for-x-lt-1-




Question Number 119567 by abdul88 last updated on 25/Oct/20
  (1 −x)(d^2 y/dx^(2 ) ) + x(dy/dx) − xy = (1/(1 − x)) , x≠1  has power series solution for ∣x∣<1
(1x)d2ydx2+xdydxxy=11x,x1haspowerseriessolutionforx∣<1
Answered by mathmax by abdo last updated on 26/Oct/20
e⇒(1−x)^2 y^(′′) +x(1−x)y^′ −x(1−x)y =1       (x≠1)let y=Σ_(n=0) ^∞ a_n x^n   ⇒y^′  =Σ_(n=1) ^∞ na_n x^(n−1)  and y^(′′)  =Σ_(n=2) ^∞ n(n−1)x^(n−2)   e⇒(x^2 −2x+1)Σ_(n=2) ^∞ n(n−1)a_n x^(n−2) +(x−x^2 )Σ_(n=1) ^∞ na_n x^(n−1)   +(x^2 −x)Σ_(n=0) ^∞  a_n x^n  =1 ⇒  Σ_(n=2) ^∞ n(n−1)a_n x^n −2Σ_(n=2) ^∞ n(n−1)a_n x^(n−1) +Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   +Σ_(n=1) ^∞ na_n x^n −Σ_(n=1) ^∞ na_n x^(n+1)  +Σ_(n=0) ^∞ a_n x^(n+2) −Σ_(n=0) ^∞ a_n x^(n+1)  =1 ⇒  ⇒Σ_(n=2) ^∞ n(n−1)a_n x^n −2Σ_(n=1) ^∞ (n+1)na_(n+1) x^n   +Σ_(n=0) ^∞ (n+2)(n+1)a_(n+2) x^n  +Σ_(n=1) ^∞ na_n x^n −Σ_(n=2) ^∞ (n−1)a_(n−1) x^n   +Σ_(n=2) ^∞ a_(n−2) x^n −Σ_(n=1) ^∞ a_(n−1) x^n  =1 ⇒  Σ_(n=2) ^∞ {n(n−1)a_n −2n(n+1)a_(n+1) +(n+1)(n+2)a_(n+2) +na_n   −(n−1)a_(n−1)  +a_(n−2) −a_(n−1) )x^n  −4a_2 x+2a_2 +6a_3 x  a_1 x−a_0 x =1 ⇒  Σ_(n=2) ^∞ {n^2 a_n −2n(n+1)a_(n+1) +(n+1)(n+2)a_(n+2) −na_(n−1) +a_(n−2) )x^n   +...=1  ....be continued...
e(1x)2y+x(1x)yx(1x)y=1(x1)lety=n=0anxny=n=1nanxn1andy=n=2n(n1)xn2e(x22x+1)n=2n(n1)anxn2+(xx2)n=1nanxn1+(x2x)n=0anxn=1n=2n(n1)anxn2n=2n(n1)anxn1+n=2n(n1)anxn2+n=1nanxnn=1nanxn+1+n=0anxn+2n=0anxn+1=1n=2n(n1)anxn2n=1(n+1)nan+1xn+n=0(n+2)(n+1)an+2xn+n=1nanxnn=2(n1)an1xn+n=2an2xnn=1an1xn=1n=2{n(n1)an2n(n+1)an+1+(n+1)(n+2)an+2+nan(n1)an1+an2an1)xn4a2x+2a2+6a3xa1xa0x=1n=2{n2an2n(n+1)an+1+(n+1)(n+2)an+2nan1+an2)xn+=1.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *