Question Number 149813 by mathdanisur last updated on 07/Aug/21
$$\int\left(−\mathrm{1}\right)^{\left[\boldsymbol{\mathrm{x}}\right]} \:\mathrm{dx}\:=\:? \\ $$
Commented by DonQuichote last updated on 07/Aug/21
$${deal}:\:{you}\:{show}\:{me}\:{your}\:{solution}\:{idea}\:{first} \\ $$$${then}\:{I}'{ll}\:{show}\:{you}\:{mine} \\ $$
Answered by mathmax by abdo last updated on 08/Aug/21
$$\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{x}} \:\left(−\mathrm{1}\right)^{\left[\mathrm{t}\right]} \:\mathrm{dt}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\sum_{\mathrm{k}=\mathrm{0}} ^{\left[\mathrm{x}\right]} \:\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \:\left(−\mathrm{1}\right)^{\mathrm{k}} \:\mathrm{dt}\:+\int_{\left[\mathrm{x}\right]} ^{\mathrm{x}} \:\left(−\mathrm{1}\right)^{\left[\mathrm{t}\right]} \:\mathrm{dt} \\ $$$$=\sum_{\mathrm{k}=\mathrm{0}} ^{\left[\mathrm{x}\right]} \:\left(−\mathrm{1}\right)^{\mathrm{k}} +\int_{\left[\mathrm{x}\right]} ^{\mathrm{x}} \left(−\mathrm{1}\right)^{\left[\mathrm{t}\right]} \mathrm{dt}\:=\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{\left[\mathrm{x}\right]+\mathrm{1}} }{\mathrm{2}}\:+\int_{\left[\mathrm{x}\right]} ^{\mathrm{x}} \:\left(−\mathrm{1}\right)^{\left[\mathrm{t}\right]} \:\mathrm{dt} \\ $$$$\mathrm{if}\:\mathrm{x}\:\mathrm{from}\:\mathrm{N}\:\:\int_{\left[\mathrm{x}\right]} ^{\mathrm{x}} \:\left(−\mathrm{1}\right)^{\left[\mathrm{t}\right]} \:\mathrm{dt}=\mathrm{0}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{x}} \:\left(−\mathrm{1}\right)^{\left[\mathrm{t}\right]} \:\mathrm{dt}=\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{\mathrm{x}+\mathrm{1}} }{\mathrm{2}} \\ $$
Commented by mathdanisur last updated on 08/Aug/21
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$$$\mathrm{but},\:\left(−\mathrm{1}\right)=\mathrm{e}^{\mathrm{i}\pi} \:\Rightarrow\:\left(−\mathrm{1}\right)^{\mathrm{3i}\pi} \:=\:\left(−\mathrm{1}\right)^{\mathrm{5i}\pi} \:=\:…\:.? \\ $$