Question Number 146790 by puissant last updated on 15/Jul/21
$$\int\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \mathrm{dx} \\ $$
Answered by Cyriille last updated on 15/Jul/21
$$\boldsymbol{\mathrm{I}}=\int\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx} \\ $$$${let}\:{u}={e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow{du}=\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx} \\ $$$$\Rightarrow\boldsymbol{\mathrm{I}}=\int{du}={u}+{k},\:\:\:\:{k}\in\boldsymbol{\mathrm{R}} \\ $$$$\Rightarrow\boldsymbol{\mathrm{I}}={e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} +{k},\:\:\:\:\:\:{k}\in\boldsymbol{\mathrm{R}} \\ $$
Commented by puissant last updated on 15/Jul/21
$$\mathrm{at}\:\mathrm{the}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{third}\:\mathrm{line}\:\mathrm{what}\: \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{sir}.? \\ $$
Commented by mathmax by abdo last updated on 16/Jul/21
$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \right)=\left(−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)^{'} \:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \:=\frac{\mathrm{2x}}{\mathrm{x}^{\mathrm{4}} }\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \:\:=\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{answer}\:\mathrm{given}\:\mathrm{not}\:\mathrm{correct}…! \\ $$
Commented by puissant last updated on 16/Jul/21
$$\mathrm{done}\:\mathrm{then}\:\mathrm{sir} \\ $$
Commented by Cyriille last updated on 16/Jul/21
$$\mathrm{By}\:\mathrm{definition}, \\ $$$$\frac{{d}}{{dx}}\left({e}^{{f}\left({x}\right)} \right)={f}^{\:'} \left({x}\right){e}^{{f}\left({x}\right)} \\ $$$$\frac{\mathrm{d}}{\mathrm{d}{x}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=\frac{{d}}{{dx}}\left({x}^{-\mathrm{2}} \right)=-{x}^{-\mathrm{1}} =-\frac{\mathrm{1}}{{x}} \\ $$$$\frac{{d}}{{dx}}\left({e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right)=-\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{'} \:{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} =-\left(-\frac{\mathrm{1}}{{x}}\right){e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow\:\frac{{d}}{{dx}}\left({e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right)=\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$ \\ $$
Commented by Cyriille last updated on 16/Jul/21
$$\Rightarrow\int{d}\left({e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right)=\int\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \:{dx} \\ $$$$,\:\int\left(\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right){dx}={e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$
Commented by mathmax by abdo last updated on 16/Jul/21
$$\mathrm{d}\left(\mathrm{x}^{−\mathrm{2}} \right)=−\mathrm{2x}^{−\mathrm{3}} \:=−\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\:\Rightarrow\mathrm{d}\left(−\mathrm{x}^{−\mathrm{2}} \right)=\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} } \\ $$