Question Number 91220 by Ar Brandon last updated on 28/Apr/20
$$\int_{\mathrm{1}} ^{\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$
Commented by abdomathmax last updated on 28/Apr/20
$${let}\:{take}\:{a}\:{try}\:\: \\ $$$${if}\:{x}>\mathrm{1}\:\:\:\:{we}\:{do}\:{the}\:{changement}\:{t}=\frac{\mathrm{1}}{{u}}\:\Rightarrow \\ $$$${I}\:=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{−{lnu}}{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\left(−\frac{{du}}{{u}^{\mathrm{2}} }\right)\:=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{{lnu}}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$$=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} {lnu}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{u}^{\mathrm{2}{n}} \right){du} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\:{u}\:{du}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:{U}_{{n}} \\ $$$${U}_{{n}} =\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\left({u}\right){du}\:=_{{by}\:{parts}} \:\:\left[\frac{{u}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}{lnu}\right]_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \\ $$$$−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{{u}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{du}\:=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\frac{{lnx}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{u}^{\mathrm{2}{n}+\mathrm{1}} \right]_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \\ $$$$=\frac{{ln}\left({x}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right){x}^{\mathrm{2}{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }\right)\:\Rightarrow \\ $$$${I}\:=−{lnx}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right){x}^{\mathrm{2}{n}+\mathrm{1}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}{n}+\mathrm{1}} }\:\:{rest}\:{to}\:{calculate}\:{those}\:{sums} \\ $$$${if}\:{x}<\mathrm{1}\:\:\:{I}\:=−\int_{{x}} ^{\mathrm{1}} \:\:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=−\int_{{x}} ^{\mathrm{1}} \:\:{lnt}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}} \right){dt} \\ $$$$=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{{x}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{lnt}\:{dt}\:\:\:{and}\:{we}\:{follow}\:{the}\: \\ $$$${same}\:{way}\:….{be}\:{continued}… \\ $$
Commented by Ar Brandon last updated on 28/Apr/20
Commented by mathmax by abdo last updated on 29/Apr/20
$${thankx} \\ $$