Menu Close

1-x-lnt-1-t-2-dt-




Question Number 91220 by Ar Brandon last updated on 28/Apr/20
∫_1 ^x ((lnt)/(1+t^2 ))dt
$$\int_{\mathrm{1}} ^{\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$
Commented by abdomathmax last updated on 28/Apr/20
let take a try    if x>1    we do the changement t=(1/u) ⇒  I =−∫_(1/x) ^1  ((−lnu)/(1+(1/u^2 )))(−(du/u^2 )) =−∫_(1/x) ^1  ((lnu)/(1+u^2 ))du  =−∫_(1/x) ^1 lnu(Σ_(n=0) ^∞ (−1)^n  u^(2n) )du  =Σ_(n=0) ^∞ (−1)^(n+1)  ∫_(1/x) ^1  u^(2n)  ln u du =Σ_(n=0) ^∞ (−1)^(n+1)  U_n   U_n =∫_(1/x) ^1  u^(2n)  ln(u)du =_(by parts)   [(u^(2n+1) /(2n+1))lnu]_(1/x) ^1   −∫_(1/x) ^1  (u^(2n) /(2n+1))du =(1/(2n+1))((lnx)/x^(2n+1) )−(1/(2n+1))[(1/(2n+1))u^(2n+1) ]_(1/x) ^1   =((ln(x))/((2n+1)x^(2n+1) ))−(1/((2n+1)^2 ))(1−(1/x^(2n+1) )) ⇒  I =−lnx Σ_(n=0) ^∞  (((−1)^n )/((2n+1)x^(2n+1) )) +Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))  −Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 x^(2n+1) ))  rest to calculate those sums  if x<1   I =−∫_x ^1   ((lnt)/(1+t^2 ))dt  =−∫_x ^1   lnt(Σ_(n=0) ^∞ (−1)^n  t^(2n) )dt  =−Σ_(n=0) ^∞  (−1)^n  ∫_x ^1  t^(2n)  lnt dt   and we follow the   same way ....be continued...
$${let}\:{take}\:{a}\:{try}\:\: \\ $$$${if}\:{x}>\mathrm{1}\:\:\:\:{we}\:{do}\:{the}\:{changement}\:{t}=\frac{\mathrm{1}}{{u}}\:\Rightarrow \\ $$$${I}\:=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{−{lnu}}{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\left(−\frac{{du}}{{u}^{\mathrm{2}} }\right)\:=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{{lnu}}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$$=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} {lnu}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{u}^{\mathrm{2}{n}} \right){du} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\:{u}\:{du}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:{U}_{{n}} \\ $$$${U}_{{n}} =\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\left({u}\right){du}\:=_{{by}\:{parts}} \:\:\left[\frac{{u}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}{lnu}\right]_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \\ $$$$−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{{u}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{du}\:=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\frac{{lnx}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{u}^{\mathrm{2}{n}+\mathrm{1}} \right]_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \\ $$$$=\frac{{ln}\left({x}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right){x}^{\mathrm{2}{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }\right)\:\Rightarrow \\ $$$${I}\:=−{lnx}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right){x}^{\mathrm{2}{n}+\mathrm{1}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}{n}+\mathrm{1}} }\:\:{rest}\:{to}\:{calculate}\:{those}\:{sums} \\ $$$${if}\:{x}<\mathrm{1}\:\:\:{I}\:=−\int_{{x}} ^{\mathrm{1}} \:\:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=−\int_{{x}} ^{\mathrm{1}} \:\:{lnt}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}} \right){dt} \\ $$$$=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{{x}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{lnt}\:{dt}\:\:\:{and}\:{we}\:{follow}\:{the}\: \\ $$$${same}\:{way}\:….{be}\:{continued}… \\ $$
Commented by Ar Brandon last updated on 28/Apr/20
��
Commented by mathmax by abdo last updated on 29/Apr/20
thankx
$${thankx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *