Menu Close

1-x-R-x-2-x-a-0-find-the-range-of-a-2-x-R-x-2-x-a-0-find-the-range-of-a-




Question Number 175943 by CrispyXYZ last updated on 10/Sep/22
(1) ∃x∈R, x^2 +x+a=0. find the range of a.  (2) ∀x∈R, x^2 +x+a=0. find the range of a.
$$\left(\mathrm{1}\right)\:\exists{x}\in\mathbb{R},\:{x}^{\mathrm{2}} +{x}+{a}=\mathrm{0}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}. \\ $$$$\left(\mathrm{2}\right)\:\forall{x}\in\mathbb{R},\:{x}^{\mathrm{2}} +{x}+{a}=\mathrm{0}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}. \\ $$
Answered by mahdipoor last updated on 10/Sep/22
1) x=((−1±(√(1−4a)))/2) ⇒ 1−4a≥0 ⇒ a≤(1/4)  2)for example : get x_1 =1  and x_0 =0  (x_1 )^2 +x_1 +a=(x_0 )^2 +x_0 +a=0  2+a=a=0 ⇒ ∄a∈R
$$\left.\mathrm{1}\right)\:{x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}{a}}}{\mathrm{2}}\:\Rightarrow\:\mathrm{1}−\mathrm{4}{a}\geqslant\mathrm{0}\:\Rightarrow\:{a}\leqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{2}\right){for}\:{example}\::\:{get}\:{x}_{\mathrm{1}} =\mathrm{1}\:\:{and}\:{x}_{\mathrm{0}} =\mathrm{0} \\ $$$$\left({x}_{\mathrm{1}} \right)^{\mathrm{2}} +{x}_{\mathrm{1}} +{a}=\left({x}_{\mathrm{0}} \right)^{\mathrm{2}} +{x}_{\mathrm{0}} +{a}=\mathrm{0} \\ $$$$\mathrm{2}+{a}={a}=\mathrm{0}\:\Rightarrow\:\nexists{a}\in{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *