Menu Close

1-x-x-1-3-




Question Number 89362 by cindiaulia last updated on 17/Apr/20
∫(1/( (√x)((√x)+1)^3 ))
$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}\left(\sqrt{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Commented by jagoll last updated on 17/Apr/20
u = 1+(√x) ⇒ du = (dx/(2(√x)))   ∫ ((2 du)/u^3 ) = ∫ 2u^(−3)  du = −u^(−2)  + c  = −(1/(((√x)+1)^2 )) + c
$${u}\:=\:\mathrm{1}+\sqrt{{x}}\:\Rightarrow\:{du}\:=\:\frac{{dx}}{\mathrm{2}\sqrt{{x}}}\: \\ $$$$\int\:\frac{\mathrm{2}\:{du}}{{u}^{\mathrm{3}} }\:=\:\int\:\mathrm{2}{u}^{−\mathrm{3}} \:{du}\:=\:−{u}^{−\mathrm{2}} \:+\:{c} \\ $$$$=\:−\frac{\mathrm{1}}{\left(\sqrt{{x}}+\mathrm{1}\right)^{\mathrm{2}} }\:+\:{c}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *